Процедура, используемая для обновления порядка вектора линейного предсказания вперед выглядит следующим образом :
, где , в котором
Соответствующий вид имеет процедура обновления порядка для вектора предсказания назад:
, где ,
Векторы
и должны удовлетворять следующим рекурсиям обновления порядка:Используя тот факт, что
является эрмитовой матрицей имеем следующие выражения для и :Введем скалярные множители
Соответствующие рекуррентные выражения для
и имеют следующий вид :Наконец, еще одна рекурсия обновления порядка необходима для вектора
:
Обновление временного индекса в векторе коэффициентов линейного предсказания вперед осуществляется в соответствии с выражением :
Выражение для обновления временного индекса у квадрата ошибки линейного предсказания вперед :
Аналогичным образом обновление временного индекса в векторе коэффициентов линейного предсказания назад ведется в соответствии с выражением :
Выражение для обновления временного индекса у квадрата ошибки линейного предсказания назад :
,где комплексный скаляр
удовлетворяет выражениям :Соответствующие рекурсии по временному индексу для действительных скаляров
и даются следующими выражениями: ,Начальные условия необходимы для того, чтобы начать рекурсивное решение с порядка равного нулю:
, , , , , ,Экспериментальные результаты приведены в соответствующем разделе.
1.4.5. Градиентный адаптивный авторегрессионный метод
1.4.6. Рекурсивный авторегрессионный метод наименьших квадратов
1.5. Спектральное оценивание на основе моделей авторегрессии - скользящего среднего .
Модель авторегресии-скользящего среднего имеет больше степеней свободы, чем авторегрессионная модель, поэтому следует ожидать, что получаемые с ее помощью оценки спектральной плотности мощности будут обладать большими возможностями для передачи формы различных спектров. Основой спектрального оценивания при помощи модели авторегрессии-скользящего среднего является аппроксимация СС-процесса авторегрессионной моделью высокого порядка. Пусть
- системная функция СС(q)-процесса -системная функция АР-процесса,эквивалентного этому СС(q)-процессу, то есть
Применим обратное z-преобразование к обеим частям последнего равенства, используя теорему об обратном преобразовании произведения функций, получим:
причемТаким образом, СС-параметры можно определить по параметрам некоторой эквивалентной авторегрессионной модели посредством решения произвольной подсистемы из q уравнений. Используя АР-оценки высокого порядка
можно записать следующую систему уравнений :В идеальном случае ошибка
должна быть равна нулю при всех значениях m, за исключением m=0, однако на практике при использовании конечной записи данных эта ошибка не будет равна нулю, поэтому оценки для CC-параметров должны определятся посредством минимизации дисперсии квадрата ошибки:Из структуры уравнения для оценок параметров скользящего среднего видно, что эти оценки можно найти, решив соответствующие нормальные уравнения (здесь используется либо «Оценивание корреляционной функции - метод Юла-Уалкера», либо
«Оценивание линейного предсказания по методу наименьших квадратов»)
Общая процедура раздельного оценивания авторегрессионных параметров и параметров скользящего среднего заключается в следующем. Этап первый - определение авторегрессионных параметров по исходным данным, после этого исходную последовательность данных необходимо подвергнуть фильтрации для получения временного ряда приближенно соответствующего некоторому СС-процессу (этап второй). Этот фильтр имеет системную функцию вида :
, где - оценкиавторегрессионных параметров, определенные с помощью метода наименьших квадратов. Системная функция процесса авторегресии-скользящего среднего равна
, поэтомуТаким образом, пропуская запись измеренных данных через фильтр с системной функцией
, получаем на его выходе аппроксимирующий процесс скользящего среднего. Этап третий : для оценивания СС-параметров применяется процедура, описанная в начале этого раздела. Оценка спектральной плотности мощности АРСС-процесса имеет вид : , где