Смекни!
smekni.com

Спектральный анализ и его приложения к обработке сигналов в реальном времени (стр. 6 из 9)

Несложно показать, что коэффициент отражения обладает следующим свойством (является коэффициентом частной корреляции между ошибками линейного предсказания вперед и назад) :

Используя оценки взаимной корреляции и автокорреляции ошибок предсказания вперед и назад, получим :

Таким образом, геометрический алгоритм использует алгоритм Левинсона, в котором вместо обычного коэффициента отражения, вычисляемого по известной автокорреляционной функции, используется его оценка

Окончательный вид выражений геометрического алгоритма :

, где n=1,2,..p-1

,

, где

1.4.3.2. Гармонический алгоритм Берга.

Алгоритм Берга идентичен геометрическому, однако оценка коэффициента отражения находится из других соображений, а именно : при каждом значений параметра p в нем минимизируется арифметическое среднее мощности ошибок линейного предсказания вперед и назад (то есть выборочная дисперсия ошибки предсказания):

Приравнивая производные к нулю, имеем оценку для

:

Некоторым обобщением является взвешивание среднего квадрата ошибки предсказания для уменьшения частотного смещения, наблюдаемого при использовании базового метода Берга:

что приводит к следующей оценке :

1.4.4. Оценивание линейного предсказания по методу наименьших квадратов.

Налагая ограничения на авторегрессионные параметры, с тем чтобы они удовлетворяли рекурсивному выражению метода Левинсона, в методе Берга происходит минимизация по одного параметра - коэффициента отражения

. Более общий подход состоит в минимизации одновременно по всем коэффициентам линейного предсказания.

Итак, пусть для оценивания авторегрессионных параметров порядка p используются последовательность данных

.Оценка линейного предсказания вперед порядка p для отсчета
будет иметь форму:

где

- коэффициенты линейного предсказания вперед порядка p.

Ошибка линейного предсказания :

В матричном виде это выражение записывается как :

и соотношение для ошибки :

Однако если рассматривать, в котором минимизируется следующая, невзвешенная выборочная дисперсия :

то матрица

принимает теплицевый вид (далее ее будем обозначать
).

Нормальные уравнения, минимизирующие средний квадрат ошибки имеют следующий вид:

Элементы эрмитовой матрицы

имеют вид корреляционных форм

, где

Таким образом, авторегрессионные параметры могут быть получены в результате решения нормальных уравнений. Рассмотрим алгоритм, который в решении нормальных уравнений учитывает тот факт, что эрмитова матрица

получена как произведение двух теплицевых и в результате этого сводит количество вычислений к
. При использовании алгоритма Холецкого потребовалось бы
операций.

Ошибки линейного предсказания вперед и назад p-ого порядка

Здесь вектор данных

, вектор коэффициентов линейного предсказания вперед
и вектор линейного предсказания назад
определяется следующими выражениями:

,
,

На основе отсчетов измеренных комплексных данных

ковариационный метод линейного предсказания позволяет раздельно минимизировать суммы квадратов ошибок линейного предсказания вперед и назад:

,

что приводит к следующим нормальным уравнениям :

,

Введем необходимые для дальнейшего определения :

,

исходя из вида

и
можно записать :

,
,

где вектор столбцы

и
даются выражениями :

,

Важными также являются следующие выражения :

Пара векторов-столбцов

и
определяются из выражений :

Аналогично определяются вектора

и
, а также
и
через матрицы
и
.