Смекни!
smekni.com

Разработка фотоприемного устройства волоконно-оптической системы передачи информации (ВОСПИ) (стр. 6 из 11)

где Рсв – падающая на ФД оптическая мощность.

η – квантовый выход.

h – 6,63·10-34 – постоянная Планка

ν – частота света.

При Рсв на выходе НЛПН равном 0,5мВт на ФПУ будем иметь :

Iф0=А·Рсв/D ; где : D – потери в линии.

С учетом потерь на двух оптических разъемах(α=1дБ/км) и затуханием ОК(α=1дБ/км) суммарные потери D=3дБ/км, что составляет 10lgD=10lg3=0,5 раз.

А = 0,7 Вт/А

Подставляя фототок Iф0 в выражение(1) и (2) получим следующие соотношения

i2ш,ф0 = 2

Iф0Δf = 32·10-19·1,75·10-4 = 5,6·10-15А2

i2ф,ш= I2ф0·10RIN/10·Δf = (0,175·10-3)2·10-15·106 = 3,06-1·10-17A2

т.е. мы получили ,что шумовой ток ,создаваемый постоянной оптической мощностью за счет RIN на два порядка меньше шумового тока , создаваемого постоянной фоновой засветкой и, соответственно, его влиянием в нашем случае можно пренебречь.

Таким образом , чем меньше ток базы . тем меньше шумы транзистора, но при малых токах ухудшается h21 ,а также ухудшаются частотные свойства , ухудшается fт, поэтому для вышесказанного частотного диапазона компромиссным решением будет использование СВЧ транзистора при токах покоя .

Iк ≈ 1÷2 мА

Формула коэффициента шума показывает справедливость этих допущений.

Например, при Rг = 1 кОм (эквивалентное сопротивление нагрузки ФД по переменному току ) , более нежелательно из-за больших частотных искажений.

При fв ≥ 400МГц необходимо использовать СВЧ транзистор 2Т3114В-6 , у которого fгр ≈ 4,7ГГц при Iк = 2мА

где: r’б - сопротивление тела базы

rб’э – сопротивление базы-эмиттер

h21э – 100

r’б – 5 Ом (для транзистора 2Т382А)

Rг=R1‌‌‌‌‌||R2||R4≈1кОм

rб’э=26/Iк·h21

При токе Iк=2мА, h21э=100, r’б=10 Ом.

При этих данных rб’э=1,3кОм; F=1,45 эквивалентный шумовой ток, учитывающий R транзистора , равен

для f=1МГц

При минимизации собственных шумов ФПУ и максимизации динамического диапазона к построению электрической принципиальной схемы ФПУ и выбору режимов транзисторов его каскадов , особенно выходных , предъявляются противоречивые требования.

Во-первых, транзисторы выбираются СВЧ диапазона , например 2Т3114В-6 маломощные, с fгр≥4 ГГц.

Ток покоя входного каскада нами уже выбран из условия минимизации шумов.

Транзистор 2Т3114В-6 имеет следующие параметры:

Pк доп = 25 мВт; fг= 4,7 ГГц;

Iк доп = 15 мА; h21= 100 ;

Uк доп = 5 В; Cк = 0,4 пФ; rрасч = 6 нс

Чтобы совместить эти противоречивые требования (минимальные шумы , максимальный частотный и динамический диапазон), входной каскад выполняется по схеме эмиттерного повторителя, который обладает этими свойствами .

Второй каскад для обеспечения заданного частотного и динамического диапазонов выполняется по каскодной схеме с местной обратной связью(ОС). В качестве 2-го и 3-го каскадов используется СВЧ микросхема типа М 45121-2.

Наличие во втором каскаде ФПУ обратной связи увеличивает особенно динамический диапазон, а также и частотный, при этом не ухудшаются шумовые свойства ФПУ, так как первый каскад создает требуемое усиление по мощности.

Это же позволяет ток покоя каскадной схемы выбрать достаточно большим, что в свою очередь увеличивает глубину обратной связи и тем самым уменьшает нелинейные и частотные искажения.

Электрические параметры микросхемы приведены в таблице 3.1 в конце главы.


3.2 Выходной каскад

Выходной каскад для согласования с внешней нагрузкой выполнен по схеме эмиттерного повторителя. При этом Rн=50 Ом и ток покоя выбирается достаточно большим.

Принципиальная схема выходного каскада изображена на рис.3.3.

Рис.3.3 Принципиальная схема выходного каскада ФПУ.

В качестве выходного транзистора VT2 можно использовать тот же транзистор, что и в предварительном усилителе:2Т3114В-6.

Учет всех этих рекомендаций позволил реализовать схему ФПУ, которая изображена на рис.3.2 и 3.3.

Первые три транзистора охвачены общей отрицательной обратной связью(ОООС), что позволяет увеличить частотный и динамический диапазоны без ухудшения чувствительности.

Анализ принципиальной схемы ФПУ показывает, что использование в качестве входного каскада эмиттерного повторителя позволяет решить одновременно много задач:

- уменьшить нелинейные искажения входного каскада ;

- увеличить его частотный диапазон;

- уменьшить нелинейные искажения второго каскада путем увеличения глубины местной ОС за счет малого выходного сопротивления эмиттерного повторителя.

Все это не ухудшает чувствительности ФПУ, так как входной каскад в h21 раза усиливает мощность сигнала.

Определим граничную частоту усиления ФПУ:

U2(p) = τ1(p)·K(p) = Јф·Zвх·F·K(p),

где U2(p) - напряжение на входе ФПУ

U1(p) - напряжение на нагрузке ФД, т. е. комплексном сопротивлении по переменному току, действующему между базой входного транзистора и общим проводом.

К(р) – общий коэффициент усиления всех каскадов ФПУ ,кроме выходного.

Јф – фототок сигнала;

Zвх – входное сопротивление ФПУ при действии общей ОС, охватывающей первые два каскада.

В нашем случае К(р) = К1(р)·К2(р) ≈ К1·К2 ≈ К2 , так как К1 = 1 и усиление этих каскадов можно считать в нашем частотном диапазоне постоянным.

Тогда, при Zвх,F= Zвх

; Fкз = 1, Fхх = 1+КВ(р)

Где В(р) =

;
= Rг·Свх; Zвх =
;

Получим:

;

1 + B0K= F0,

, K2 = 4

Частота верхнего среза для входных каскадов ФПУ( первого и второго) при действии общей ООС равна:

ФПУ может быть выполнен и на дискретных транзисторах, по приведенной выше схемотехнике, но при этом должны использоваться транзисторы с fг > (4÷5) ГГц

Технология использования возможна гибридно-пленочная.

Таблица 3.1

Параметры, единицы

измерения

Норма
Не менее Не более
1. Верхняя частота рабочего диапазона, МГц 1000 -
2. Коэффициент шума в режиме преобразования, дБ - 10
3. Верхняя граница линейности АЧХ по сжатию Кр на 1дБ, мВт 0,1 -
4. Развязка между каналами, дБ 30 -
5. Коэффициент передачи по мо- щности в режиме усиления, дБ - 5
6. Допустимая входная мощность, мВт - 5
7. Минимальная наработка, час 25000 -
8. 90 - процентный ресурс, час 40000 -
9. Масса, г - 1,5
10. Конструктивное исполнение планарное, 14 гибких ленточных вывода, габариты (мм.)

* Для повышения устойчивости и уменьшения паразитных связей свободные выводы и основание корпуса рекомендуется заземлить.


4. Расчет фотоприемного устройства

4.1 Расчет выходного усилителя.

Расчет К-цепи по постоянному току включает выбор режимов транзисторов и расчет сопротивлений резисторов, обеспечивающих выбранные режимы и их стабильность. При этом мощности, потребляемые, от источников питания и сигнала должны быть минимальными.

Режим работы транзистора , определяемый положением исходной рабочей точки(точки покоя) на выходных характеристиках транзистора (рис.4.1.)т.е. значениями тока покоя коллектора Iк к постоянной составляющей напряжения между коллектором и эмиттером Uк , должно быть таким, чтобы на внешней нагрузке обеспечивалось заданная(номинальная)мощность сигнала и параметры предельных режимов работы транзистора не превышали максимально допустимых значений.

Принимая во внимание потери мощности сигнала в выходной цепи , вносимые цепью обратной связи, выходной цепью транзистора, максимальное рабочее значение мощности, рассеиваемой на коллекторе транзистора

Ркр макс < ik

Рк доп = 100 мВт

(Мощность рассеиваемая на коллекторе транзистора не должна превышать допустимую величину).

Определим режим работы выходного транзистора. Ток коллектора выходного транзистора был оговорен при выборе принципиальной схемы.

Для уменьшения нелинейных и частотных искажений ток покоя выбрали равным 10 мА исходя из того что:

Rкр макс ≈ Uкэ·Iк