Смекни!
smekni.com

Электронные цепи и приборы (шпаргалка) (стр. 7 из 10)

Достоинства ГМ:

1. возможность выбора элемента с разными параметрами.

2. хорошая электроизоляция элемента.

Недостатки:

1. большие размеры, вес, стоимость.

2. больше сварных соединений, а значит меньше надежность.

3. меньше степень интеграции.

43. Компараторы.

Компаратор (К) – устройство, предназначенное для сравнения двух напряжений. На выходе К устанавливается U, соответствующее логической единице: uвых = U1, если напряжение неинвертирующего входа u+вх больше напряжения инвертирующего входа u-вх. В противоположном случае, когда u-вх > u+вх, на выходе устанавливается напряжение соотв. логическому нулю: uвых = U0.

В качестве К можно использовать операционный усилитель. Однако уровни выходного U ОУ определяются напряжениями питания и не соответствуют уровням логических сигналов цифровых интегральных схем.

Как и в ОУ, в К входной каскад – дифференциальный. Для повышения чувствительности за диф. каскадом следует каскад усиления напряжения. Выходной каскад К отличается от соотв. каскада ОУ и представляет собой электронный ключ.

Вход. показатели компаратора:

Rвх, входной ток сдвига Iвх сд = Δiвх = j+ - j-, напряжение смещения Есм, дифф. коэфф усиления Кд, полоса пропускания – аналогичны соотв. параметрам ОУ.

Выходные показатели:

Уровни сигналов U0, U1, коэфф разветвления N – анлогичны показателям цифровых ИС.

Специфическим параметром К явл. зона неопределенности ΔUн, равная разности входных напряжений, которой соотв. выходные напряжения между U1 и U0:

ΔUн = (U1-U0) / KД.

К часто используют в качестве пороговых устройств, предназначенных для выделения сигналов, значения которых больше или меньше некоторого заданного. В таких устройствах на один вход подается сигнал, на другой – опорное напряжение – порог сравнения.

32. Интегральные микросхемы. Принцип построения. Технологические приемы реализации. Применение.

Интегральной микросхемой (ИМС) является многоэлектронное изделие, выполняющее определенную функцию преобразования и обработки сигнала, и имеющее высокую плотность упаковки электрически соединенных элементов и (или) кристаллов.

Элементом ИМС называют часть ИМС, реализующую функцию какого-либо электрорадиоэлемента, которая выполнена нераздельно от кристалла или подложки. Обычно все элементы ИМС изготавливают одновременно в ходе единого технологического цикла. Полупроводниковые ИМС выполняются на кремниевых пластинках диаметром 30 – 60 мм, при помощи таких технологических процессов как резка, шлифовка, очистка, окисление, травление, фотолитография, диффузия. На одной пластине помещаются до 1000 микросхем и одновременно технологический процесс идет на несколько десятков пластин, поэтому стоимость одной пластины небольшая.

Основная структура полупроводниковой ИМС – это транзистор. На структуре транзистора выполняются все остальные элементы схемы. Для диода используются эмиттерный или коллекторный p-n-переходы, в таком случае лишний третий вывод присоединяется к выводу базы. Такое подключение называется транзистор в диодном включении.

Конденсатор. В качестве него применяется емкость p-n-перехода.

Резистор. В качестве резистора применяется область эмиттер или база, или коллектор, для чего только от этих областей делается 2 вывода.

Изоляция между элементами выполняется при помощи обратно включенных p-n-переходов, которые образуются между подложкой микросхемы и элементом. Такой p-n-переход имеет большое сопротивление, а значит выполняется изоляция.

Достоинства ИМС:

1. высокая степень интеграции.

2. малое количество сварных соединений, а значит высокая надежность.

3. малый размер, вес.

4. низкая себестоимость.

Недостатки ИМС:

1. один из больших недостатков – трудно получить большое количество элементов с разными параметрами.

2. существуют какие-то паразитные связи между элементами.

3. такие микросхемы, как правило, маломощные.

34. Принцип построения усилительных каскадов на транзисторах.

В качестве базового узла предварительных усилителей наиболее широко применяется усилительный каскад на биполярном транзисторе, включенный по схеме с ОЭ. Простейшая схема такого каскада приведена на рис. 1.

рис. 1.

Графики, поясняющие его работу на рис. 2.

рис. 2.

Для получения наименьших нелинейных искажений усиливаемого сигнала, рабочую точку А выбирают посередине рабочего участка характеристик (участок ВС на рис. 2.b). Выбранный режим обеспечивается требуемой величиной IбА, задаваемого Rб.

При подаче на вход транзистора напряж. сигнала Uвх происходит изменение ток базы, а, следовательно, и изменение Iк, и напряжения на RН. Амплитуда выходного тока Iкm примерно в βБТ раз больше амплитуды базового тока Iбm, а амплитуда коллекторного напряж. Uкm во много раз больше амплитуды Uвх:

Uкm >> Uвх.m = Uбэ.m.

Т.о каскад усиливает I и U входного сигнала, что иллюстрирует рис. 2.a и b.

Пользуясь графиками нетрудно определить основные параметры каскада:

1. входное сопротивление Rвх = Uбэm / Iбm.

2. коэффициент усиления по току Hi = Iкm / Iбm.

3. коэффициент усиления по напряжению Hu = Uкm / Uбэm.

4. коэффициент усиления по мощности Hp = HuHi.

Обычно каскады предварительных усилителей работают в режиме усиления слабых сигналов. Это особенность позволяет использовать аналитические методы расчета параметров каскадов по известным H-параметров транзисторов.

37. Обратная связь в усилителях. Применение обратной связи для коррекции характеристик усилителей.

Цепь, через которую часть выходного сигнала подается из выходной цепи обратно во входную цепь,.назыв. цепь обрат связи.

Uсв – та часть выходного напряжения которое подается обратно.

β = Uсв / Uвых – коэфф. обратной связи, который показывает какая часть выходного напряжения подается во входную цепь.

Uвх – входное напряжение без обратн. связи.

U – входное напряжение с обратной связью U = Uвх ± Uсв.

Рис. 1.

Положительная обратная связь имеет место, когда Uсв и Uвх совпадают по фазе, тогда U = Uвх + Uсв. Усиление увеличивается, но ухудшаются все остальные свойства усилителя. Есть опасность самовозбуждения.

Отриц. обратная связь – Uсв и Uвх противоположны по фазе. Тогда U = Uвх - Uсв.

Усиление уменьшается, но улучшаются все остальные свойства усилителя. Поэтому в усилителе применяется ООС.

Виды обратной связи по способу подключения ко входной и выходной цепи:

Рис. 2.

1. ООС по напряжению – когда цепь обратной связи подключена параллельно нагрузке, тогда Uсв прямо пропорционально Uвых (рис. 2.a)

2. ООС по току. Имеет место, когда цепь ООС подключается последовательно с нагрузкой, тогда Uсв прямо пропорционально Iвых (рис. 2.b).

3. Смешанная по выходу ОС. Имеет место, когда Uсв пропорционально Iвых и пропорционально Uвых (рис. 2.с).

Эти три вида ОС определяются по способу «как мы снимаем».

Рис. 3.

1. Последовательная ООС, когда цепь ОС подключена последовательно с источником сигнала (рис. 3.a).

2. Параллельная ООС, когда цепь ОС подключена параллельно источнику сигнала (рис. 3.b).

3. Смешанная по входу ООС, когда ОС пропорциональна току и напряжению источника сигнала (рис 3.с).

41. Операционные усилители.

ОУ – это схема, разработанная и впервые применяемая для выполнения разных алгебраических операций. ОУ имеют широкое применение для усиления сигнала, в схемах коррекции АЧХ, в фильтрах, генераторах.

ОУ – это усилитель с непосредственными связями, большим коэффициентом усиления, большим входным сопротивлением, дифференциальным входом, несимметричным выходом с малым выходным сопротивлением.

Рис. 1.

ОУ имеет 2 входа и 1 выход, питается от двухполярного источника питания.

Вх.1 назыв. неинвертирующим, т.к. входной и выходной сигнал совпадает по фазе.

Вх.2 – инвертирующий, т.к. выходной сигнал противоположный по фазе входному.

Параметры:

1. коэфф усиления очень большой

К = 10з - 106.

2. вых сопротивление очень маленькое Rвых ≈ 10 Ом.

3. входное сопротивление очень большое Rвх ≈ 100 кОм – 10 МОм.

4. широкая полоса пропускания fн = 10 Гц, fв = 10 МГц.

5. Маленькие искажения, фоны, помехи и дрейф нуля.