Ширина p-n перехода также уменьшается h’<h. Дрейфовый ток уменьшается, диффузионный ток резко возрастает. Динамическое равновесие нарушается и ч/з p-n переход протекает прямой ток:
Iпр=Iдиф - Iдр ≈ Iдиф=Iобр ехр·(qeUпр / кТ).
Из формулы видно, при увелич. Uпр ток может возрасти до больших значений, т.к. он обусловлен движением основных носителей, концентрация которых в обеих областях ПП велика.
рис. 1.
ВАХ p-n перехода наз. зависимость тока, протекающего ч/з p-n переход, от величины и полярности приложенного U. Аналитич. выраж. ВАХ p-n перехода имеет вид:
I=Iобр[ехр·(qeU / кТ)-1], где Iобр – обратный ток насыщения p-n перехода, U – напряж., приложенное к p-n переходу
Хар-ка, построенная с использованием этого выражения, имеет 2 характерных участка (рис. 2).
рис. 2.
1. участок соответствующий прямому управляющему напряжению; 2. участок соответствующий Uобр.
При больших Uобр наблюдается пробой p-n перехода, при кот. Iобр резко увеличивается. Различают два вида пробоя: электрический и тепловой.
6. p-n переход при обратном смещении. Пробой p-n перехода.
Электронно-дырочным p-n наз. такой переход, кот. образован двумя областями ПП с разными типами проводимости: электронный и дырочный.
Включение, при кот. к p-n переходу прикладывается внешнее напряж. Uобр в фазе с контактной разностью потенциалов, наз. обратным (рис. 1.).
рис. 1.
Под действием эл. поля, создаваемого внешним источником Uобр, основные носители оттягиваются от приконтактных слоев вглубь полупроводника. Как видно из рис. 2 это приводит к расширению p-n перехода (h’>h). Потенциальный барьер возрастает и становится равным Uб=Uк+Uобр. Число основных носителей, способных преодолеть действие результирующего поля, уменьшается. Это приводит к уменьшению диффузионного тока, кот. может быть определен по формуле:
Iдиф=Iобр ехр·(-qeUобр / кТ).
При обр. включении преобладающую роль играет дрейфовый ток. Он имеет небольшую величину, т.к. создается движение неосновных носителей. Этот ток наз. обратным и определяется по формуле: Iобр=Iдр – Iдиф.
Пробоем наз. резкое увелич. I ч/з переход в области обратных напряж. превышающих U, называемое Uпроб. Существуют 3 основных вида пробоя: туннельный, лавинный и тепловой.
рис. 2.
7. Полупроводниковый диод.
Полупроводниковый диод (ПД) представляет собой 2х-электродный прибор, действие кот. основано на использовании эл-ских свойств p-n перехода или контакта металл-полупроводник. К этим св-вам относятся: односторонняя проводимость, нелинейность ВАХ, наличие участка ВАХ, обладающего отрицательным сопротивлением, резкое возрастание обратного тока при эл-ком пробое, существование емкости p-n перехода. В завис. от того, какое из свойств p-n перехода используется, ПД могут быть применены для целей выпрямления, детектирования, преобразования, усиления и генерирования эл. колебаний, а также для стабилизации напряжения в цепях постоянного тока и в качестве переменных реактивных элементов.
В большинстве случаев ПД отличается от симметричного p-n перехода тем, что p- область диода имеет значительно большее количество примесей, чем n-область (несимметричный p-n переход), т.е. в этом случае n- область носит название базы диода. При подаче на такой переход обратного напряжения ток насыщения будет состоять почти только из потока дырок из базы в p- область и будет иметь меньшую величину, чем для симметричного перехода. При подаче прямого напряжения прямой ток тоже почти полностью будет состоять из потока дырок из p-области в базу, и уже при небольших прямых напряжениях будет возрастать экспоненциально. Уравнение ВАХ p-n перехода имеет вид:
.
Применение ПД для тех или иных целей определяет требования, предъявляемые к его хар-кам, к величинам преобразуемых мощностей, токов и напряжений. Эти требования могут быть удовлетворены с помощью соответствующего выбора материала, из кот. изготовляется диод, технологией изготовления p-n перехода и конструкцией диода.
В соответствии с этим ПД разделяются на ряд основных типовых групп. Существующая классификация подразделяет ПД следующим образом:
а) по назначению (выпрямительные, детекторные, преобразовательные, стабилитроны, варикапы и др.);
б) по частотным свойствам (низкочастотные, высокочастотные, СВЧ);
в) по типу перехода (плоскостные, точечные);
г) по исходному материалу (германиевые, кремниевые, арсенид-галлиевые и т.д.);
Кроме того, существует разделение ПД внутри одной группы в соответствии с электрическими параметрами.
Кроме специфических параметров, характеризующих данную типовую группу, существуют параметры общие для всех ПД независимо от их специального назначения. К ним относятся: рабочий интервал температур, допустимое обратное напряжение, допустимый выпрямленный ток, допустимая мощность рассеивания.
8. Выпрямительные диоды.
Выпр. диод (ВД) применяются для преобразования переменного I НЧ (до 50 кГц) в I одного направления (выпрямление переменного I). Обычно рабочие частоты ВД малой и средней мощности (P) не превышают 20 кГц, а диодов большой мощности – 50 Гц.
Возможность применения p-n перехода для целей выпрямления обусловлено его свойством проводить I в одном направлении (I насыщения очень мал).
В связи с применением ВД к их характеристикам и параметрам предъявляются следующие требования:
а) малый обратный ток I0;
б) большое обратное напряжение;
в) большой прямой ток;
г) малое падение напряжения при протекании прямого тока.
Для того чтобы обеспечить эти требования, ВД выполняются из полупроводниковых материалов с большой шириной запрещенной зоны (ЗЗ), что уменьшает обр. I, и большим удельным R, что увеличивает допустимое обр. U. Для получения в прямом направлении больших I и малых падений U следует увеличивать площадь p-n перехода и уменьшать толщину базы.
ВД изгот-ся из германия (Ge) и кремния (Si) с большим удельным R, причем Si является наиболее перспективным материалом.
Si диоды, в результате того, что Si имеет большую ширину ЗЗ, имеют во много раз меньшие обратные I, но большее прямое падение U, т.е. при равной P отдаваемой в нагрузку, потеря энергии у Si диодов будет больше. Si диоды имеют большие обратные U и большие плотности U в прямом направлении.
Зависимость ВАХ кремниевого диода от температуры (t) показана на рисунке.
Из рис. следует, что ход прямой ветви ВАХ при изменении (t) изменяется незначительно. Это объясняется тем, что концентрация основных носителей заряда при изменении температуры (t) практически почти не изменяется, т.к. примесные атомы ионизированы уже при комнатной t.
Количество неосновных носителей заряда определяется t и поэтому ход обратной ветви ВАХ сильно зависит от t, причем эта зависимость резко выражена для Ge диодов. Величина U пробоя тоже зависит от t. Эта зависимость определяется видом пробоя p-n перехода. При электрическом пробое за счет ударной ионизации возрастает при повышении t. Это объясняется тем, что при повышении t увелич-ся тепловые колебания решетки, уменьш-ся длина свободного пробега носителей заряда и для того, чтобы носитель заряда приобрел энергию достаточную для ионизации валентных связей, надо повысить напряженность поля, т.е. увеличить приложенное к p-n переходу обратное U. При тепловом пробое Uпроб при повышении t уменьшается.
В некотором интервале t для Ge диодов пробой чаще всего бывает тепловым (ширина ЗЗ Ge невелика), а для Si диодов – электрическим. Это определяет значения при заданной t. При комнатной t значения для Ge диодов обычно не превышают 400В, а для Si – 1500В.
9. Стабилитрон.
рис.1. рис. 2.
Обратная ветвь ВАХ, показанной на рис. 1, т.е. явление пробоя p-n перехода, можно использовать для целей стабилизации U, пользуясь тем обстоятельством, что до тех пор пока пробой носит электрический характер характеристика пробоя полностью обратима. Полупроводник. диоды, служащие для стабилизации U, называются стабилитронами (С).
Как видно из ВАХ, в области пробоя незначительные изменения обратного U приводят к резким изменениям величины обратного I.
Предположим, что диод, имеющий такую характеристику, включен в простейшую схему, показанную на рис. 2, причем рабочая точка находится в той области ВАХ, где при изменении тока U практически остается постоянным.
В этом случае, если изменяется входное напряжение U, то изменяется I в цепи, но т.к. U на диоде при изменении I остается постоянным (изменяется R диода), то и U в точках а, б – постоянно. Если параллельно к диоду к точкам а, б подключить R нагрузки, то U на нагрузке тоже не изменится.
С изготовляются из кремния (Si). Это связано с тем, что в C может быть использована только электрическая форма пробоя, которая явл. обратимой. Если пробой перейдет в необратимую тепловую форму, то прибор выйдет из строя. Поэтому величина Iобр в C ограничена допустимой мощностью рассеивания Pрас = Uобр·Iобр.