Смекни!
smekni.com

Электроизоляционная керамика (стр. 6 из 9)

Толщина однократно металлизируемого слоя серебра составляет 3—10 мкм. В случае необходимости для получения покрытия с бо­лее толстым слоем деталь металлизируют 2 — 3 раза, проводя последовательно вжигание каждого нанесенного металлизированного слоя. Толщина металлизирующего слоя на из­делиях среднего размера составляет 40 — 50 мкм.

Металлизация составами на основе туго­плавких металлов применяется для различных вакуум-плотных керамических изделий из фар­фора, стеатита, форстерита и корундовой ке­рамики. В металлизирующий состав входят различные добавки: марганец, железо, крем­ний, оксиды металлов — А12О3, ТiО2, Сr2О3, карбиды, бориды и специальные плавни.

Металлизация различных типов керамиче­ских материалов производится по схеме: очист­ка изолятора от загрязнений, обезжиривание, приготовление и нанесение металлизирующего состава, вжигание покрытия, зачистка, нанесе­ние второго металлизирующего состава, вжи­гание второго покрытия и контроль качества покрытия.

Для приготовления металлизирующих паст используют материалы, получаемые с завода-изготовителя в виде тонкомолотых порошков с удельной поверхностью 4000—5000 см2/г для молибдена и 5000—7000 см2/г для марганца.

Компоненты металлизирующей пасты, взя­тые в заданном соотношении, смешиваются с раствором коллоксилина в изоамилацетате или водно-спиртовый раствор полиамидной смолы. Смешивание компонентов производится в валковой мельнице со стальным барабаном до получения однородной пасты.

Процесс вжигания металлизирующих по­крытий производится в печах с защитной га­зовой средой при температуре 1200—1350 °С с выдержкой при конечной температуре 20—30 мин. Режим вжигания устанавливается опытным путем.

Вжигание покрытия проводится в печах периодического действия или толкательных пе­чах непрерывного действия в увлажненной или азотно-водородной среде при отношении азота к водороду 2:1 или 3:1. Керамические материалы, содержащие в своем составе до­статочное количество стеклофазы (фарфор, стеатит и др.), можно металлизировать па­стами на основе тугоплавких металлов без специальных добавок, а керамические матери­алы, содержащие менее 5 % стеклофазы, не­обходимо металлизировать пастами, в состав которых входят компоненты, образующие жид­кую фазу в процессе вжигания покрытия.

В табл. 13 (см. приложения) приведены составы для ме­таллизации вакуумплотных керамических ма­териалов.

Для увеличения толщины покрытия и об­легчения пайки на молибденовое покрытие методом вжигания или гальваническим путем наносится слой никеля (второе покрытие)./2/

ПРИЛОЖЕНИЯ:

Очистка от песка

Рис. 1. Технологическая схема производства электрокерамических изделий

Таблица 1. Фазовый состав и основные свойства электрофарфора

Показатель

Фарфор

твёрдый

с повышенным содержанием муллита

кристобалитовый

корундовый

Состав, %

Муллит

25-28

35-48

23-25

10-12

Кремнезем

10-12

1-5

23-25

-

Кристобалит

-

-

20-25

-

Корунд

-

0-5

-

35-40

Стеклофаза

60-62

55-60

28-33

45-50

Основные свойства

Прочность при изгибе, МПа

70

120

110

170-220

Ударная вязкость, кДж/м2

1,5

2,0

2,2

2,5

Электрическая прочность, МВ/м

30

35

35

35

Таблица 2. Основные классы электротехнических материалов соот-ветственно применению

Класс

Применение

Вид керамики

Характерные особенности

1

Изоляторы для ус-тройств высокого и низкого напряжения, низкой частоты

Электрофарфор и глиноземистый фарфор

Хорошие электромеханические свойства, возмож-ность изготовления изоляторов любых размеров

2

Низкочастотные и вы-сокочастотные изоля-торы и конденсаторы малой ёмкости

Стетит, ультрафарфор, корундо-муллитовая керамика, цельзиановая керамика

Небольшое значение εr

3

Конденсаторы высо-кого и низкого напря-жения, высокой и низ-кой частоты

Рутиловая, перовскитовая, титано-циркониевая керамика, стронций-висмутовый титанат, алюминат-лантановая керамика

Высокое и очень вы-сокое значение εr, за-данное или не регла-ментированное зна-чение ТКε

4

Термодугостойкие узлы: искрогаситель-ные камеры, основа-ния нагревательных элементов и проволоч-ных резисторов, изоля-торы в вакуумных приборах

Кордиерит, литий-содержащая, высокоглиноземистая и цирконовая кера-мика

Высокая механи-ческая стойкость при нагреве и стойкость к термоударам

5

Высоконагревостойкие изоляторы

Керамика на основе чистых оксидов алю-миния, магния, бе-риллия и т. д.

Высокие электри-ческие свойства при высокой температу-ре, высокая тепло-проводность

6

Резисторы

Смесь керамики с са-жей или графитом; керамика на основе смешанных кристал-лов оксида цинка и оксидов металлов с переменной валент-ностью

Повышенная и высо-кая электропровод-ность, линейная и нелинейная вольт-амперные харак-теристики

Таблица 3. Огнеупорные глины

Место-рож-дение

Содержание оксидов, %

Потери при прокали-вании, %

SiO2

Al2O3

Fe2O3

CaO

MgO

K2O

Na2O

Часовъяр-ское

49,6-60,74

27,17-36,15

0,77-1,97

0,24-1,12

0,64-1,32

1,42-2,99

0,19-0,54

9,86-7,35

Дружков-ское

47,0-57,0

32,4-37,0

0,81-1,32

0,72-1,38

0,16-0,50

1,18-3,48

11,46-9,50

Торжков-ское

45,5-55,1

28,9-37,3

0,43-2,73

0,46-2,30

0,14-1,81

0,04-1,59

0,24-0,96

17,70-11,06

Таблица 4. Каолины