4.4.1 Эмиттерная термостабилизация
Одной из распространенных схем с обратной связью, предназначенных для стабилизации режима, является схема с эмиттерной стабилизацией [5], которая изображена на рисунке 4.7.
Рассчитаем основные элементы схемы по следующим формулам:
(4.22)
(4.23)
(4.24)
(4.25)
(4.26)
(4.27)(4.28)
где Iдел. – ток делителя;
PRэ – мощность рассеиваемая на резисторе Rэ .
Базовый ток найдем из формулы (4.23).
4.4.2 Коллекторная термостабилизация
Коллекторная стабилизация является простейшей и наиболее экономичной из всех схем термостабилизации. Стабилизация положения точки покоя осуществляется параллельной отрицательной обратной связью по напряжению, снимаемой с коллектора транзистора. Полное описание и работу схемы можно найти в книге [5]. Схема коллекторной стабилизации представлена на рисунке 4.8.
Рассчитаем основные элементы схемы по следующим формулам:
(4.29)
(4.30)(4.31)
Выберем напряжение URк=7.5В и расчитаем значение сопротивления Rк по формуле (4.29).
4.4.3 Активная коллекторная термостабилизация
Рисунок 4.9 – Схема активной коллекторной термостабилизации
VT1 – транзистор КТ814: bо= 40, Uкэдоп.=20В, Iк =2.5А;
VT2 – транзистор КТ930Б.
Рассчитаем элементы схемы по следующим формулам:
(4.32)
(4.33)
(4.34)
(4.35)
(4.36)(4.37)
(4.38)
Базовый ток транзистора VT2 определим по формуле (4.33).
Значение сопротивления R2 расчитаем по формуле (4.35).
4.5 Расчет корректирующих цепей
4.5.1 Выходная корректирующая цепь
Расчеты входных, выходных и межкаскадных КЦ ведутся с использованием эквивалентной схемы замещения транзистора приведенной на рисунке 4.11. Для получения максимальной выходной мощности в заданной полосе частот необходимо реализовать ощущаемое сопротивление нагрузки для внутреннего генератора транзистора, равное постоянной величине во всем рабочем диапазоне частот. Это можно реализовать, включив выходную емкость транзистора в фильтр нижних частот, используемый в качестве выходной КЦ. Схема включения выходной КЦ приведена на рисунке 4.11.
Выходную корректирующую цепь можно рассчитать с использованием методики Фано, которая подробно описана в методическом пособии [6]. Зная Свых и fв можно рассчитать элементы L1 и C1 .
Рассчитаем нормированное значение Свыхн по следующей формуле:
Исходя из таблицы, которая представлена в методическом пособии [6]. По значению нормированной выходной емкости находим нормированные значения L1 и C1, а так же коэффициент n. Получим следующие значения:
(4.40)
(4.41)
(4.42)
4.5.2 Межкаскадная корректирующая цепь
Как упоминалось ранее, для передачи сигнала от одного каскада многокаскадного усилителя к другому, от источника сигнала на вход первого усилительного элемента и от выходной цепи последнего усилительного элемента в нагрузку применяют различные схемы, называемые межкаскадными корректирующими цепями (МКЦ). Эти схемы одновременно служат и для подачи питающих напряжений на электроды усилительных элементов, а также придания усилителю определенных свойств.
Существуем множество различных схем МКЦ, но в данном курсовом проекте используется межкаскадная корректирующая цепь третьего порядка, которая изображена на рисунке 4.12.
Межкаскадная корректирующая цепь третьего порядка обеспечивает достаточно хорошее согласование между усилительными элементами и способствует максимальной отдачи выходной мощности усилительного элемента в нагрузку.
третьего порядка
В качестве усилительного элемента VT2 используется транзистор КТ930А.
Расчет межкаскадной корректирующей цепи третьего порядка производится по следующей методике.
В начале расчета определяют неравномерность амплитудно-частотной характеристики (АЧХ) приходящейся на каждый каскад. Затем из таблицы, которая находится в методическом пособии [6] по неравномерности АЧХ определяют коэффициенты а1 , а2,, а3. После находят нормированные значения Свых.н , Lвх.н и Rвх.н по следующим формулам: