Смекни!
smekni.com

Физические основы электроники (стр. 10 из 16)

а)

б)

в)

Рисунок 3.3 Схемы включения БТ.

В нормальном активном режиме (НАР) на эмиттерном переходе действует прямое напряжение (напряжение эмиттер - база UЭБ), а на коллекторном переходе - обратное (напряжение коллектор - ба­за UКБ). Этому режиму соответствуют полярности источников пита­ния на рисунке 3.4 и направления токов для p-n-p транзистора. В случае n-p-n транзистора полярности напряжения и направления токов из­меняются на противоположные.

Рисунок 3.4 Физические процессы в БТ.

Этот режим работы (НАР) является основным и определяет на­значение и название элементов транзистора. Эмиттерный переход осуществляет инжекцию носителей в узкую базовую область, кото­рая обеспечивает практически без потерь перемещение инжектиро­ванных носителей до коллекторного перехода. Коллекторный пере­ход не создает потенциального барьера для подошедших носите­лей, ставших неосновными носителями заряда в базовой области, а, наоборот, ускоряет их и поэтому переводит эти носители в коллекторную область. “Собира­тельная” способность этого перехода и обусловила название “кол­лектор”. Коллектор и эмиттер могут поменяться ролями, если на коллекторный переход подать прямое напряжение UКБ, а на эмиттерный -обратное UЭБ. Такой режим работы называется инверсным активным режимом (ИАР). В этом случае транзистор “работает” в обратном направлении: из коллектора идет инжекция дырок, кото­рые проходят через базу и собираются эмиттерным переходом, но при этом его параметры отличаются от первоначальных.

Режим работы, когда напряжения на эмиттерном и коллектор­ном переходах являются прямыми одновременно, называют режи­мом двухсторонней инжекции (РДИ) или менее удачно режимом насыщения (РН). В этом случае и эмит­тер, и коллектор инжектируют носители заряда в базу навстречу друг другу и одновременно каждый из переходов собирает носители, приходящие к нему от другого перехода.

Наконец, режим, когда на обоих переходах одновременно действуют обратные напряжения, называют ре­жимом отсечки (РО), так как в этом случае через переходы протекают ма­лые обратные токи.

Следует подчеркнуть, что классификация режимов производится по комбинации напряжений переходов, В схеме включения с общей базой (ОБ) они равны напряжениям источни­ков питания UЭБ и UКБ. В схеме включения с общим эмиттером (ОЭ) напряжение на эмиттерном переходе определяется напря­жением первого источника (UЭБ = -UБЭ), а напряжение коллектор­ного перехода зависит от напряжений обоих источников и по обще­му правилу определения разности потенциалов UКБ = UКЭ + UЭБ. Так как UЭБ = -UБЭ, тo UКБ = UКЭ - UБЭ; при этом напряжение источ­ников питания надо брать со своим знаком: положительным, если к электроду присоединен положительный полюс источника, и от­рицательным - в другом случае. В схеме включения с общим кол­лектором (ОК) напряжение на коллекторном переходе определя­ется одним источником: UКБ = -UБК. Напряжение на эмиттерном переходе зависит от обоих источников: UЭБ = UЭК + UКБ = UЭК - UБК, при этом правило знаков прежнее.

3.1.2 Физические процессы в бездрейфовом биполярном

транзисторе при работе в активном режиме.

Основные физические процессы в идеализированном БТ удобно рассматривать на примере схемы с общей базой (рисунок 3.4), так как напряжения на переходах совпадают с напряжениями источников питания. Выбор p-n-p транзистора связан с тем, что направление движения инжектируемых из эмиттера носителей (дырок) совпадает с направлением тока.

В нормальном активном режиме (НАР) на эмиттерном переходе действует прямое напряжение UЭБ. Поэтому прямой ток перехода

, (3.1)

где Iэ р, Iэ n - инжекционные токи дырок (из эмиттера в базу) и электронов (из базы в эмиттер), а Iэрек - составляющая тока, вы­званная рекомбинацией в переходе тех дырок и электронов, энергия которых недостаточна для преодоления потенциального барьера. Относительный вклад этой составляющей в ток перехода Iэ в (3.1) тем заметнее, чем меньше инжекционные составляющие Iэр и Iэn, определяющие прямой ток в случае идеа­лизированного р-n перехода. Если вклад Iэ рек незначителен, то вместо (3.1) можно записать

. (3.2)

Полезным в сумме токов выражения (3.1) является только ток Iэ р, так как он будет участвовать в создании тока коллекторного перехода. “Вредные” составляющие тока эмиттера Iэ n и Iэ рек протекают через вывод базы и являются составляющими тока ба­зы, а не коллектора. Поэтому вредные компоненты Iэ n, Iэ рек долж­ны быть уменьшены.

Эффективность работы эмиттерного перехода учитывается ко­эффициентом инжекции эмиттера

, (3.3)

который показывает, какую долю в полном токе эмиттера составля­ет полезный компонент. В случае пренебрежения током Iэ рек

. (3.4)

Коэффициент инжекции gЭ "тем выше (ближе к единице), чем меньше отношение Iэ n/ Iэ р. Величина Iэ n/ Iэ р << 1, если концентрация акцепторов в эмиттерной области p-n-p транзистора NАЭ на несколь­ко порядков выше концентрации доноров NДБ в базе (NАЭ >> NДБ). Это условие обычно и выполняется в транзисторах.

Какова же судьба дырок, инжектированных в базу из эмиттера, определяющих полезный ток IЭр? Очевидно, что инжектированные дырки повышают концентрацию дырок в базе около границы с эмиттерным переходом, т.е. вызывают появление градиента концентра­ции дырок - неосновных носителей базы. Этот градиент обусловливает диффузионное движение дырок через базу к коллекторному переходу. Очевидно, что это движение должно сопровождаться ре­комбинацией части потока дырок. Потерю дырок в базе можно учесть введением тока рекомбинации дырок IБ рек, так что ток подхо­дящих к коллекторному переходу дырок

. (3.5)

Относительные потери на рекомбинацию в базе учитывают коэф­фициентом переноса:

. (3.6)

Коэффициент переноса показывает, какая часть потока дырок, ин­жектированных из эмиттера в базу, подходит к коллекторному пере­ходу. Значение cБ тем ближе к единице, чем меньшее число инжек­тированных дырок рекомбинирует с электронами - основными носи­телями базовой области. Ток IБрек одновременно характеризует одинаковую потерю количества дырок и электронов. Так как убыль электронов в базе вследствие рекомбинации в конце концов покры­вается за счет прихода электронов через вывод базы из внешней це­пи, то ток IБрек следует рассматривать как составляющую тока базы наряду с инжекционной составляющей IЭ n.

Чтобы уменьшить потери на рекомбинацию, т.е. увеличить cБ, необходимо уменьшить концентрацию электронов в базе и ширину базовой области. Первое достигается снижением концентрации до­норов Nд Б. Это совпадает с требованием NАЭ/NДБ, необходимым для увеличения коэффициента инжекции. Потери на рекомбинацию будут тем меньше, чем меньше отношение ширины базы WБ и диф­фузионной длины дырок в базовой области Lp Б. Доказано, что име­ется приближенное соотношение

. (3.7)

Например, при WБ/Lp Б = 0,1 cБ = 0,995, что очень мало отличается от предельного значения, равного единице.

Если при обратном напряжении в коллекторном переходе нет ла­винного размножения проходящих через него носителей, то ток за коллекторным переходом с учетом (3.5)

(3.8)

С учетом (3.6) и (3.3) получим

, (3.9)

где

. (3.10)

Это отношение дырочной составляющей коллекторного тока к пол­ному току эмиттера называет статическим коэффициентом пере­дачи тока эмиттера.

Ток коллектора имеет еще составляющую IКБО, которая протекает в цепи коллектор - база при IЭ = 0 (холостой ход, “обрыв” цепи эмиттера), и не зависит от тока эмиттера. Это обратный ток перехо­да, создаваемый неосновными носителями областей базы и коллек­тора, как в обычном p-n переходе (диоде).

Таким образом, полный ток коллектора с учетом (3.8) и (3.10)

. (3.11)

Из (3.11) получим обычно используемое выражение для стати­ческого коэффициента передачи тока:

, (3.12)

числитель которого (IК - IКБО) представляет собой управляемую (за­висимую от тока эмиттера) часть тока коллектора, IКр. Обычно ра­бочие токи коллектора IК значительно больше IКБО, поэтому

. (3.13)

С помощью рисунка 3.4 можно представить ток базы через компоненты:

. (3.14)