Смекни!
smekni.com

Учебная практика по специальности ТО и ремонт РЭА (стр. 3 из 4)

При проверке n-р-n транзисторов подключение производится наоборот: прямое сопротивление измеряется при соединении с базой плюсового вывода омметра, а обратное сопротивление — при соединении с базой минусового вывода. При пробое перехода его прямое и обратное сопротивления оказываются равными нулю. При обрыве перехода его прямое сопротивление бесконечно велико. У исправных маломощных транзисторов обратные сопротивления переходов во много раз больше их прямых сопротивлений. У мощных транзисторов это отношение не столь велико, тем не менее, омметр позволяет их различить.

Из эквивалентной схемы биполярного транзистора вытекает, что с помощью омметра можно определить тип проводимости транзистора и назначение его выводов (цоколевку). Сначала определяют тип проводимости и находят вывод базы транзистора. Для этого один вывод омметра подключают к одному выводу транзистора, а другим выводом омметра касаются поочередно двух других выводов транзистора. Затем первый вывод омметра подключают к другому выводу транзистора, а другим выводом омметра касаются свободных выводов транзистора. Затем первый вывод омметра подключают к третьему выводу транзистора, а другим выводом касаются остальных.

После этого меняют местами выводы омметра и повторяют указанные измерения. Нужно найти такое подключение омметра, при котором подключение второго вывода омметра к каждому из двух выводов транзистора, не подключенных к первому выводу омметра, соответствует небольшому сопротивлению (оба перехода открыты).

Тогда вывод транзистора, к которому подключен первый вывод омметра, является выводом базы. Если первый вывод омметра является плюсовым, значит, транзистор относится к n-p-n проводимости, если - минусовым, значит, p-n-р проводимости. Теперь нужно определить, какой из двух оставшихся выводов транзистора является выводом коллектора.

Для этого омметр подключается к этим двум выводам, база соединяется с плюсовым выводом омметра при n-р-n транзисторе или с минусовым выводом омметра при р-n-р транзисторе и замечается сопротивление, которое измеряется омметром. Затем выводы омметра меняются местами, (база остается подключенной к тому же выводу омметра, что и ранее) и вновь замечается сопротивление по омметру. В том случае, когда сопротивление оказывается меньше, база была соединена с коллектором транзистора. Полевые транзисторы проверять не рекомендуется.

Проверка микросхем.

При помощи омметра можно производить проверку тех микросхем, которые представляют собой набор диодов или биполярных транзисторов. Таковы, например, диодные сборки и матрицы КДС111, КД906 и микросхемы К159НТ, К198НТ и другие.

Проверка диода, транзистора производится по уже описанной методике. Если неизвестно назначение выводов сборки или микросхемы, оно также может быть определено, хотя из-за наличия нескольких транзисторов в одном корпусе приходится проводить более громоздкие измерения. При этом нужно установить систему подключения омметра к выводам, чтобы выполнить все возможные комбинации.

РАЗРАБОТКА И ИЗГОТОВЛЕНИЕ ПЕЧАТНЫХ ПЛАТ

При разработке различных устройств радиолюбители пользуются обычно двумя способами изготовления печатных плат - прорезанием канавок и травлением рисунка, используя стойкую краску. Первый способ прост, но непригоден для выполнения сложных устройств. Второй - более универсален, но порой пугает радиолюбителей сложностью из-за незнания некоторых правил при проектировании и изготовлении травленых плат. Об этих правилах и рассказывается в разделе.

Проектировать печатные платы наиболее удобно в масштабе 2:1 на миллиметровке или другом материале, на котором нанесена сетка с шагом 5 мм. При проектировании в масштабе 1:1 рисунок получается мелким, плохо читаемым и поэтому при дальнейшей работе над печатной платой неизбежны ошибки. Масштаб 4:1 приводит к большим размерам чертежа и неудобству в работе.

Все отверстия под выводы деталей в печатной плате целесообразно размещать в узлах сетки, что соответствует шагу 2,5 мм на реальной плате (далее по тексту указаны реальные размеры). С таким шагом расположены выводы у большинства микросхем в пластмассовом корпусе, у многих транзисторов и других радиокомпонентов. Меньшее расстояние между отверстиями следует выбирать лишь в тех случаях, когда это крайне необходимо.

В отверстия с шагом 2,5 мм, лежащие на сторонах квадрата 7,5 х 7,5 мм, удобно монтировать микросхему в круглом металлостеклянном корпусе. Для установки на плату микросхемы в пластмассовом корпусе с двумя рядами жестких выводов в плате необходимо просверлить два ряда отверстий. Шаг отверстий - 2,5 мм, расстояние между рядами кратно 2,5 мм. Заметим, что микросхемы с жесткими выводами требуют большей точности разметки и сверления отверстий.

Если размеры печатной платы заданы, вначале необходимо начертить ее контур и крепежные отверстия. Вокруг отверстий выделяют запретную для проводников зону с радиусом, несколько превышающим половину диаметра металлических крепежных элементов.

Далее следует примерно расставить наиболее крупные детали -реле, переключатели (если их впаивают в печатную плату), разъемы, большие детали и т.д. Их размещение обычно связано с общей конструкцией устройства, определяемой размерами имеющегося корпуса или свободного места в нем. Часто, особенно при разработке портативных приборов, размеры корпуса определяют по результатам разводки печатной платы.

Цифровые микросхемы предварительно расставляют на плате рядами с межрядными промежутками 7,5 мм. Если микросхем не более пяти, все печатные проводники обычно удается разместить на одной стороне платы и обойтись небольшим числом проволочных перемычек, впаиваемых со стороны деталей. Попытки изготовить одностороннюю печатную плату для большего числа цифровых микросхем приводят к резкому увеличению трудоемкости разводки и чрезмерно большому числу перемычек. В этих случаях разумнее перейти к двусторонней печатной плате.

Условимся называть ту сторону платы, где размещены печатные проводники, стороной проводников, а обратную - стороной деталей, даже если на ней вместе с деталями проложена часть проводников. Особый случай представляют платы, у которых и проводники, и детали размещены на одной стороне, причем детали припаяны к проводникам без отверстий. Платы такой конструкции применяют редко.

Микросхемы размещают так, чтобы все соединения на плате были возможно короче, а число перемычек было минимальным. В процессе разводки проводников взаимное размещение микросхем приходится менять не раз.

Рисунок печатных проводников аналоговых устройств любой сложности обычно удается развести на одной стороне платы. Аналоговые устройства, работающие со слабыми сигналами, и цифровые на быстродействующих микросхемах (например, серий КР531, КР1531, К500, КР1554) независимо от частоты их работы целесообразно собирать на платах с двусторонним фольгированием, причем фольга той стороны платы, где располагают детали, будет играть роль общего провода и экрана. Фольгу общего провода не следует использовать в качестве проводника для большого тока, например, от выпрямителя блока питания, от выходных ступеней, от динамической головки.

Далее можно начинать собственно разводку. Полезно заранее измерить и записать размеры мест, занимаемых используемыми элементами. Резисторы МЛТ-0,125 устанавливают рядом, соблюдая расстояние между их осями 2,5 мм, а между отверстиями под выводы одного резистора - 10 мм. Так же размечают места для чередующихся резисторов МЛТ-0,125 и МЛТ-0,25, либо двух резисторов МЛТ-0,25, если при монтаже слегка отогнуть один от другого (три таких резистора поставить вплотную к плате уже не удастся).

С такими же расстояниями между выводами и осями элементов устанавливают большинство малогабаритных диодов и конденсаторов КМ-5 и КМ-6, вплоть до КМ-66 емкостью 2,2 мкФ; не надо размещать бок о бок две "толстые" (более 2,5 мм) детали, их следует чередовать с "тонкими". Если необходимо, расстояние между контактными площадками той или иной детали увеличивают относительно необходимого.

В этой работе удобно использовать небольшую пластину-шаблон из стеклотекстолита или другого материала, в которой с шагом 2,5 мм насверлены рядами отверстия диаметром 1...1,1 мм, и на ней примерять возможное взаимное расположение элементов. Если резисторы, диоды и другие детали с осевыми выводами располагать перпендикулярно печатной плате, можно существенно уменьшить ее площадь, однако рисунок печатных проводников усложнится.

При разводке следует учитывать ограничения в числе проводников, умещающихся между контактными площадками, предназначенными для подпайки выводов радиоэлементов. Для большинства используемых в радиолюбительских конструкциях деталей диаметр отверстий под выводы может быть равен 0,8 мм. Ограничения на число проводников для типичных вариантов расположения контактных площадок с отверстиями такого диаметра приведены на рис. 135 (сетка соответствует шагу 2,5 мм на плате).

Между контактными площадками отверстий с межцентровым расстоянием 2,5 мм провести проводник практически нельзя. Однако это можно сделать, если у одного или обоих отверстий такая площадка отсутствует (например, у неиспользуемых выводов микросхемы или у выводов любых деталей, припаиваемых на другой стороне платы). Такой вариант показан на рис. 135 посредине вверху.

При использовании микросхем, у которых выводы расположены в плоскости корпуса (серии 133, К134 и др.), их можно смонтировать, предусмотрев для этого соответствующие фольговые контактные площадки с шагом 1,25 мм, однако это заметно затрудняет и разводку, и изготовление платы. Гораздо целесообразнее чередовать подпайку выводов микросхемы к прямоугольным площадкам со стороны деталей и к круглым площадкам через отверстия -на противоположной стороне .