Материал, используемый для изготовления подложек, должен иметь однородный состав, гладкую поверхность (с чистотой обработки по 12—14-му классу), обладать высокой электрической и механической прочностью, быть химически инертным, обладать высокой теплостойкостью и теплопроводностью, коэффициенты термического расширения материала подложки и осаждаемой пленки должны быть близки по значению. Вполне понятно, что практически почти невозможно подобрать материалы для подложек, которые в равной степени пени удовлетворяли бы всем перечисленным требованиям.
В качестве подложек для гибридных ИС использую ситалл, фотоситалл, высокоглиноземистую и бериллиевую керамику, стекло, поликор, полиимид, а также металлы, покрытые диэлектрической пленкой.
Ситаллы—это стеклокерамические материалы, полу чаемые путем термообработки (кристаллизации) стекла. Большинство ситаллов получено в системах Li2О-Аl2Оз-SiO2-ТiO2 и RО-Al2Оз-SiO2-ТiO2 (КО типа СаО, МgО, ВаО).
В отличие от большинства высокопрочных тугоплавких кристаллических материалов ситалл обладает хорошей гибкостью при формировании. Его можно прессовать, вытягивать, прокатывать и отливать центробежным способом, причем он выдерживает резкие перепады температуры. Он имеет низкие диэлектрические потери, по электрической прочности не уступает лучшим сортам вакуумной керамики, и по механической прочности в 2—3 раза прочнее стекла. Ситалл не порист, газонепроницаем и имеет незначительное газовыделение при высоких температурах.
Поскольку по своей структуре ситаллы многофазны, то при воздействии на них различных химических реактивов, применяемых, например, для очистки поверхности подложки от загрязнений, возможно глубокое селективное травление отдельных фаз, приводящее к образованию резкого и глубокого рельефа на поверхности подложки. Наличие шероховатостей на поверхности подложки снижает воспроизводимость параметров и надежность тонкопленочных резисторов и конденсаторов. Поэтому для уменьшения высоты и сглаживания краев микронеровностей иногда на подложку наносят грунтующий слой из материала, обладающего хорошими диэлектрическими и адгезионными свойствами, а также однородной структурой (например, слой моноокиси кремния толщиной в несколько микрон).
Из стекол в качестве подложек применяются аморфные силикатные стекла, бесщелочное стекло С48-3, боросиликатное и кварцевое стекло. Силикатные стекла получают из жидкого расплава окислов путем их переохлаждения, в результате чего сохраняется структура жидкости, т. е. характерное аморфное состояние. Хотя в стеклах имеются области с кристаллической фазой - кристаллиты, они распределены хаотично по всей структуре, занимают малую часть объема и существенного влияния на аморфную природу стекла не оказывают.
Кварцевое стекло является однокомпонентным силикатным стеклом, состоит практически из одного кремния и получается путем плавления его природных разновидностей. Оно имеет очень низкий коэффициент термического расширения, что определяет его исключительно высокую термостойкость. По сравнению с другими [стеклами кварцевое стекло инертно к действию большинства химических реагентов. Органические и минеральные кислоты (за исключением плавиковой и фосфорной кислот) любых концентраций даже при повышенной температуре почти не действуют на кварцевое стекло.
Керамические подложки находят ограниченное применение из-за высокой пористости. Достоинствами этих подложек являются высокая прочность и теплопроводность. Так, например, подложка из керамики на основе ВеО обладает в 200—250 раз более высокой теплопроводностью, чем стекло, поэтому при напряженных тепловых режимах целесообразно применять бериллиевую керамику. Помимо бериллиевой керамики, применяются высокоглиноземистая (94% Аl2Оз) керамика, плотный алюмооксид, стеатитовая керамика, а также глазурованная керамика на основе окиси алюминия. Следует отметить, что глазури имеют толщину менее 100 мкм, и поэтому не являются заметным барьером между пленкой и подложкой при невысоких уровнях мощности. Микронеровности необработанной керамики в сотни раз больше, чем у стекла, и достигают нескольких тысяч ангстрем. Они могут быть значительно снижены путем полировки, однако при этом существенно загрязняется поверхность керамики.
Наличие загрязнений на подложке оказывает существенное влияние как на адгезию, так и на электрофизические свойства пленок. Поэтому перед осаждением приходится тщательно очищать подложки, а также защищать их от возможности появления масляных пленок, которые могут возникнуть в результате миграции паров рабочих жидкостей из насосов. Эффективным способом очистка является ионная бомбардировка поверхности подложки в плазме тлеющего разряда. Для этой цели в рабочей камере вакуумной установки обычно предусматриваются особые электроды, на которые от маломощного высоковольтного источника подается напряжение в несколько киловольт. Электроды чаще всего изготавливаются из алюминия, поскольку среди металлов он имеет самую низкую скорость катодного распыления.
Следует иметь в виду, что даже незначительное загрязнение может полностью изменить условия роста пленки. Если загрязнения располагаются на подложке в форме небольших изолированных друг от друга островков, то в зависимости от того, какая энергия связи больше: между материалом пленки и материалом загрязнения или же между материалом пленки и подложкой, пленка может образоваться либо на этих островках, либо на обнаженной части подложки.
Адгезия пленки в очень сильной степени зависит от наличия окисного слоя, который может возникнуть в процессе осаждения между пленкой и подложкой. Такой окисный слой образуется, например, при осаждении железа и нихрома, чем и объясняется хорошая адгезия этих пленок. Пленки из золота, которое не подвержено окислению, имеют плохую адгезию, и поэтому между золотом и подложкой приходится создавать промежуточный подслой из материала с высокой адгезией. Желательно, чтобы образующийся слой окисла был сосредоточен между пленкой и подложкой. Если же окисел будет диспергирован по всей пленке или же будет располагаться на ее поверхности, то свойства пленки могут сильно измениться. На образование окислов сильное влияние оказывают состав остаточных газов в рабочем объеме установки и в особенности наличие паров воды.
Если еще недавно тонкопленочные резисторы использовались главным образом при изготовлении гибридных ИС, то за последние годы они все шире начинают применяться в производстве монолитных ИС по совмещенной технологии. Замена диффузионных резисторов на тонкопленочные дает целый ряд преимуществ: низкий температурный коэффициент 'сопротивления, низкую паразитную емкость, более высокую радиационную стойкость, более высокую точность номинала и др.
Материалы, используемые при изготовлении резистивных пленок, должны обеспечивать возможность получения широкого диапазона стабильных во времени резисторов с низким температурным коэффициентом сопротивления (ТКС), обладать хорошей адгезией, высокой коррозионной стойкостью и устойчивостью к длительному воздействию повышенных температур. При осаждении материала на подложке должны образовываться тонкие, четкие линии сложной конфигурации с хорошей повторяемостью рисунка от образца к образцу.
Резистивные пленки чаще всего имеют мелкозернистую дисперсную .структуру. Наличие дисперсности г, структуре пленок позволяет в первом приближении рассматривать их электросопротивление как суммарное сопротивление отдельных гранул и барьеров между ними, при котором характер общего сопротивления определяет величину и знак ТК.С. Так, например, если преобладающим является сопротивление самих зерен, то проводимость пленки имеет металлический характер и ТКС будет положительным. С другой стороны, если сопротивление обусловлено прохождением электронов через промежутки между зернами (что обычно имеет место при малых толщинах пленки), то проводимость будет иметь полупроводниковый характер и ТКС соответственно будет отрицательным.