Для получения столь больших скоростей осаждения пленок чаще всего используются электронно-лучевые испарители. При этом степень совершенства кристаллической структуры пленок может неконтролируемо изменяться вследствие дополнительного радиационного нагрева подложек, величина которого зависит как от мощности испарителя, так и от материала подложки и толщины осаждаемой пленки. Неконтролируемые изменения в структуре пленки возникают также из-за наличия заряженных частиц в молекулярном пучке испаряемых паров Аl. Концентрация заряженных частиц тем выше, чем больше ток эмиссии катода и больше скорость испарения.
Одним из существенных недостатков пленок чистого Аl является перенос вещества в результате электродиффузии (дрейфа ионов материала вдоль проводника, ее ли на концах последнего имеется разность потенциалов). Скорость перемещения ионов является функцией температуры и увеличивается с ростом последней. По мимо электродиффузии, возможна диффузия атомов металла в результате разности температур на концах проводника. Если Аl осаждается на окисел кремния, то это вызывает плохой отвод тепла, появление «горячих» центров на проводящих дорожках и как следствие значительные градиенты температуры. Электромиграция А1 при плотностях тока, меньших, чем для других металлов, приводит к появлению пустот в пленке (эффект Киркендалла).
Поскольку электродиффузия является активационным процессом, то она существенно зависит от состояния поверхности границы зерен. Уменьшение протяженности границ за счет увеличения размеров зерна и подбор материала защитного покрытия могут существенно увеличить энергию активации и как следствие время наработки на отказ. Значительного увеличения времени наработки на отказ можно достичь за счет добавки к алюминию примесей меди, магния, хрома, а также окиси алюминия.
После нанесения пленки А1 и получения требуемой конфигурации токоведущих дорожек производят вплавление А1 в кремний при температуре 500—550°С для получения низкоомного контакта. Миграция избыточного кремния на токоведущих дорожках, прилегающих к контактным подложкам, вызывает шелушение А1 и отказы ИС. Для предотвращения этого необходимо при испарении А1 вводить в него около 2 масс. % кремния. Добавка кремния в контактные площадки из А1 уменьшает миграцию кремния из неглубоко залегающего эмиттерного слоя (около 1 мкм), что существенно увеличивает быстродействие ИС на биполярных транзисторах и предотвращает закорачивание в ИС неглубоко залегающих эмиттерных переходов. Для предотвращения миграции кремния в пленку А1 в качестве промежуточного слоя может быть использована пленка титана. Применение метода создания омических контактов с подслоем титана в быстро действовавших ИС позволило в 20 раз увеличить время наработки на отказ. Помимо титана, может использоваться подслой платины или палладия с образованием силицида платины или силицида палладия.
Наряду с ранее перечисленными достоинствами металлизация алюминием обладает рядом существенных недостатков, важнейшими из которых являются следующие:
малая величина энергии активации атомов А1, вызывающая электромиграцию при плотностях тока примерно 106 А/см2 и повышенных температурах, в результате чего появляются пустоты в пленках;
возможность короткого замыкания через диэлектрик в многоуровневых системах металлизации вследствие образования острых выступов на плевке в результате электромиграции и рекристаллизации А1;
опасность гальванической коррозии Аl при одновременном использовании других металлов; большая скорость диффузии А1 по границам зерен, не допускающая использования приборов с металлизацией А1 при температурах более 500°С;
интенсивное химическое взаимодействие А1 с двуокисью кремния при температуре около 500°С;
низкая точка плавления в эвтектике систем алюминий — кремний около 577°С;
большое различие (в 6 раз) коэффициентов термического расширения А1 и 51;
мягкость А1 и, следовательно, невысокая механическая прочность пленок;
невозможность присоединения выводов с помощью пайки;
высокое пороговое напряжение в МОП структурах в связи с большой работой выхода.
Из-за перечисленных недостатков алюминиевая металлизация не применяется в ИС и транзисторах с мелкими эмиттерными переходами, а также в МДП ИС для ..создания затворных электродов. Для этой цели применяют, однослойные и многослойные системы из различных металлов (в том числе А1 для получение верхнего слоя). Наиболее подходящими материалами являются вольфрам и молибден. В частности, вольфрам имеет практически одинаковый с кремнием ТКС, хороший омический контакт к кремнию р- и n- типов проводимости, малое (в 2,5 раза) отличие от алюминия по электропроводности, самое высокое из всех металлов значение энергии активации при самодиффузии, высокую температуру плавления эвтектики с кремнием, химическую инертность на воздухе и в водном растворе плавиковой кислоты, а также высокую твердость, что исключает возможность появления царапин на пленке.
Благодаря высокой температурной стойкости W его можно использовать для многоуровневой металлизации, чередуя слои двуокиси кремния с W. При термообработке на поверхности пленки не образуются холмики и нет опасности короткого замыкания между токоведущими дорожками в многослойной металлизации. Кроме того, пленки W (так же как и пленки Мо) являются металлургическим барьером, препятствующим образованию межкристаллической структуры кремния и алюминия.
Недостатком металлизации W является трудность получения пленок (для чего обычно используется пиролиз гексофторида вольфрама) и их травления (в щелочном растворе ферроцианида). Оба эти процесса сложны и проводятся с использованием токсичных веществ. Кроме того, непосредственно к вольфраму невозможно подсоединить внешние выводы, поэтому поверх него на контактные площадки и наносят какой-либо другой металл (Рt, Ni, Аи, Си, А1 и др.).
При изготовлении ИС СВЧ диапазона, ИС специального назначения, а также в гибридной технологии применяют металлизацию, состоящую из нескольких слоев тонких металлов. При этом обычно первый (нижний) слой металла должен обладать высокой адгезией как к кремнию, так и к двуокиси кремния и одновременно иметь малые значения коэффициентов растворимости и диффузии в этих материалах. Этим требованиям удовлетворяют такие металлы, как хром, титан, молибден, а также силицид платины. При двухслойной металлизации второй (верхний) слой металла должен иметь высокую электропроводность и обеспечивать приварку к нему проволочных выводов. Однако в некоторых системах (таких, как Сг-Аu, Тi-Аu или Сг-Сu) контакты
при термообработке теряют механическую прочность в результате образования на их границе интерметаллических соединений. Кроме того, верхний металл диффундирует через нижележащий слой в кремний, что снижает механическую прочность соединения и изменяет контактное сопротивление. Для устранения этого явления обычно используют третий слой металла, который является барьером, препятствующим взаимодей:твию верхнего слоя металлизации с кремнием. Так, например, в тройной системе Тt-Рl-Аu, которая применяется при изготовлении балочных выводов, слой
Рис. 1. Схема процесса изготовления двухуровневой металлизации в системе А1-А1гОз-А1.
а-- нанесение толстого и тонкого слоев окисла кремния перед металлизацией (показана область омического контакта); б—нанесение алюминия, образующего первый уровень; в — фотогравировка первого уровня металла; г — анодирование первого уровня металлизации с фоторезистивной маской; д — нанесение алюминия, образующего второй уровень; е — фотогравировка второго уровня металлизации.
Рt толщиной около 5Х10-2 мкм служит барьером против диффузии А1 в S1. Помимо этого для балочных выводов в МДП ИС применяются системы Сг-Аg-Аu, Сг-Аg-Рt, Рd-Аg-Аu, в которых роль барьера выполняет пленка серебра. Для гибридных ИС и полосковмх линий ИС СВЧ диапазона применяются системы Сг-Сu и Сг-Сu-Сг.
Увеличение плотности размещения элементов на кристалле потребовало применения многоуровневой металлизации. На рис. 1 показана последовательность изготовления двухуровневой металлизации в системе А1-А120з-А1, которая применяется в приборах с зарядовой связью.
Сравнительно новым изолирующим материалом для многоуровневой металлизации является полиимид, с помощью которого получают пятиуровневую металлизацию БИС на МДП транзисторах.
Факторы, влияющие на свойства тонких пленок
Рост одного вещества на подложке из другого вещества — очень сложный процесс, зависящий от большого числа трудно контролируемых параметров: структуры подложки, состояния ее поверхности, температуры, свойств испаряемого вещества и скорости его осаждения, материала и .конструкции испарителя, степени разрежения, состава остаточной среды и ряда других. В табл. 1 показана связь между свойствами пленок и условиями их осаждения.
Свойства пленки | факторы, влияющие на указанные свойства | ||||||||||||||
Размер зерен | Материал подложки и пленки. Загрязнения подложки. | ||||||||||||||
Подвижность атомов осаждаемого материала на поверхности | |||||||||||||||
подложки (температура подложки, скорость осаждения). | |||||||||||||||
Структура поверхности подложки (степень шероховатости, | |||||||||||||||
наличие кристаллов) | |||||||||||||||
Расположение кристаллов | Структура подложки ''(монокристаллическая, | ||||||||||||||
поликристаллическая или аморфная). Загрязнения подложки | |||||||||||||||
(нарушение структуры пленки). Температура подложки | |||||||||||||||
(обеспечение необходимой подвижности атомов осаждаемого | |||||||||||||||
материала) | |||||||||||||||
Адгезия между пленкой | Материал подложки и пленки. Дополнительные процессы | ||||||||||||||
(например, образование промежуточного слоя окисла | |||||||||||||||
между пленкой и подложкой). Загрязнение подложки. | |||||||||||||||
Подвижность атомов осаждаемого материала | |||||||||||||||
Загрязнение | Чистота испаряемого материала. Материал испарителя. | ||||||||||||||
Загрязнение подложки. Степень разрежения и состав | |||||||||||||||
остаточной среды. Соотношение между давлением остаточных | |||||||||||||||
газов и скоростью осаждения | |||||||||||||||
Окисление | Степень химического сродства осаждаемого материала к | ||||||||||||||
кислороду. Поглощение водяных паров подложкой. | |||||||||||||||
Температура подложки. Степень разрежения и состав | |||||||||||||||
остаточной среды. Соотношение между давлением остаточных | |||||||||||||||
газов и скоростью осаждения | |||||||||||||||
Напряжение | Материал пленки и подложки. Температура подложки. | ||||||||||||||
Размер зерен, включения, кристаллографические дефекты в | |||||||||||||||
пленке. Отжиг. Угол между молекулярным пучком и подложкой |
В зависимости от конкретных условий осаждения пленки одного и того же вещества могут иметь следующие основные структурные особенности: аморфную структуру, характеризующуюся отсутствием кристаллической решетки; коллоидную (мелкозернистую) структуру, характеризующуюся наличием очень мелких кристалликов (менее 10~2 мкм); гранулярную (крупнозернистую) структуру, имеющую крупные кристаллы (10-1 мкм и более); монокристаллическую структуру, когда вся пленка представляет собой сплошную кристаллическую решетку атомов данного материала.