(1.28)
Среднее значение выпрямленного напряжения получилось гораздо меньше, чем при емкостном фильтре, и чтобы получить при этом необходимое напряжение на нагрузке, приходится увеличивать напряжение на вторичной обмотке трансформатора, что приведет к увеличению обратного напряжения на диодах и к увеличению габаритов блока питания в целом, поэтому выходное напряжение рекомендуется увеличивать введением в индуктивный фильтр конденсатора. Такой фильтр называют Г-образным индуктивно-емкостным LC-фильтром.
1.5.6.2. Г-образный индуктивно-емкостный LC-фильтр
|
Рис. 1.14. Г-образный индуктивно-емкостный LC-фильтр
Амплитуда основной гармоники переменного тока через дроссель
. (1.29)
Амплитуда переменного напряжения на выходе фильтра
(1.30)
Коэффициент сглаживания фильтра, равный отношению коэффициента пульсации на входе к коэффициенту пульсаций на выходе,
(1.31)
При совместной работе индуктивности и емкости в схеме фильтра проявляются свойства контура, в результате чего в схеме может возникнуть колебательный процесс. Чтобы избежать этого, необходимо обеспечить равенство амплитуды переменной составляющей тока и постоянной составляющей , поэтому введено понятие критической индуктивности, значение которой определяется из следующих соображений.
Так как
(1.32)
а с учетом того, что ХL >> XC, амплитудное значение тока
(1.33)
то условием для определения критического значения индуктивности дросселя будет
из которого следует
(1.34)
Примечание. С достаточной для практики точностью при питании выпрямителя от сети с частотой 50 Гц значение критической индуктивности дросселя можно принять равной
(1.35)
Для лучшего сглаживания пульсаций выпрямленного напряжения на выходе выпрямителя применяют П-образные LC-фильтры.
1.5.6.3. П-образный индуктивно-емкостный LC-фильтр
Такой фильтр (рис. 1.22) можно рассматривать как два фильтра:
1. Простой емкостный фильтр, состоящий из конденсатора С1.
2. Г-образный индуктивно-емкостный фильтр (из дросселя L и конденсатора С2).
Рис. 1.15. П-образный индуктивно-емкостный LC-фильтр
Действующее значение напряжения пульсаций на выходе П-образного
фильтра
, (1.36)
где - действующее значение напряжения пульсаций на входе фильтра П-образного индуктивно-емкостного фильтра.
В источниках малой мощности для уменьшения размеров и массы фильтра вместо дросселя применяют резистор. Резистивно-емкостные фильтры рассчитывают и строят по тем же схемам, что и индуктивно-емкостные (Г- и П-образные фильтры), но необходимо принять к сведению, что на RC-фильтрах происходит значительное падение постоянного напряжения (до 20 %).
Теоретическое обобщение по выпрямителям, работающим на фильтры, содержащие индуктивность
Рис. 1.17. Каскадное включение LC-фильтров
Коэффициент сглаживания таких фильтров определяется как произведение коэффициентов сглаживания отдельных звеньев
1.6. Туннельные диоды
Основные полупроводниковые материалы, из которых изготавливаются туннельные диоды, - германий и арсенид галлия.
|
Особенности туннельных диодов:
1. Высокая концентрация примесных атомов (1019–1021).
2. Вольт-амперная характеристика туннельного диода содержит участок с отрицательным динамическим сопротивлением («аб» на рис. 1.28), что позволило использовать его в усилителях и генераторах электрических колебаний и в импульсных устройствах. При этом качество работы диода определяет протяженность и крутизна падающего участка ВАХ.
3. У туннельного диода обратный ток достигает большой величины при малом обратном напряжении.
4. Важное преимущество туннельного диода перед обычным заключается в его очень высокой рабочей частоте. Это объясняется тем, что туннельный переход электронов происходит почти мгновенно (за
время 10-13сек.). Частотные свойства туннельного диода на падающем участке ВАХ определяются параметрами его схемы замещения (рис. 1.19, б).
|
|
|
Рис. 1.24. Схемное изображение опорного диода.
1.7.1. Краткие теоретические сведения
Опорными диодами называются полупроводниковые диоды, вольт-амперная характеристика которых имеет участок со слабой зависимостью напряжения от тока (Рис. 1.25). Название «опорных» они получили за счет способности фиксировать уровни напряжений в схемах. В основу работы опорных диодов положено явление холодной эмиссии и управляемый электрический пробой в p-n-переходе. Концентрация примесных атомов в стаби
|
Рис. 1.25. ВАХ кремниевого стабилитрона
Назначение стабилитронов - стабилизация напряжения; у современных стабилитронов напряжение стабилизации доходит до нескольких сотен вольт, а ток - до десятков ампер, при этом дрейф напряжения может быть не
более 0,1 В.
Конструкция стабилитронов та же, что и у выпрямительных диодов; у тех и у других выбор корпуса связан с мощностью рассеяния.
Ветвь характеристики прямосмещенного стабилитрона показывает, что он способен стабилизировать напряжение и в таком состоянии, но уровень стабилизируемого напряжения гораздо меньше, чем при обратносмещенном состоянии диода.
Участок "аб" - для стабилизации напряжения: большим изменениям тока (от Iст.мин. до Iст.мах) соответствуют незначительные изменения напряжения (Uст).
Максимальный ток Iст.мах ограничивается допустимой мощностью рассеяния, а минимальный (Iст.мин) соответствует началу устойчивого электрического пробоя. При меньших значениях тока стабилитрона он может служить источником шумов (используется в генераторах шумов).
В пределах "аб" сопротивление стабилитрона изменяется при изменении тока через него, а напряжение при этом остается почти постоянным. После точки "б" стабилитрон переходит в режим теплового пробоя, при этом в нем идут необратимые процессы и структура диода разрушается. В режиме теплового пробоя стабилитрон имеет участок на ВАХ с отрицательным динамическим сопротивлением.