При малых значениях обратного напряжения через p-n-переход будет наблюдаться движение и основных носителей, образующих ток, противоположно направленный току дрейфа:
Результирующий ток через p-n-переход при действии обратного напряжения
(1.4)
Уравнение (1.4) описывает обратную ветвь обратносмещенного перехода (рис. 1.1).
При Uобр, большем 3jt, диффузионный ток через переход прекращается.
Выше было отмечено, что ток Iо идеализированного перехода не зависит от приложенного напряжения, но реальный обратный ток перехода намного превышает величину Iо; необходимо четко отличать ток тепловой от тока обратного, получившего название тока термогенерации; в кремниевых структурах тепловой ток при комнатной температуре вообще не учитывается, так как он на 2-3 порядка меньше обратного тока. У германиевых переходов тепловой ток на 6 порядков больше, чем у кремниевых, поэтому в германиевых структурах этим током пренебрегать нельзя.
В реальном переходе наблюдается довольно значительная зависимость тока неосновных носителей от приложенного напряжения. Дело в том, что процессы генерации и рекомбинации носителей происходят как в нейтральных слоях областей "p" и "n", так и в самом переходе. В равновесном состоянии перехода скорости генерации и рекомбинации везде одинаковы, а при действии обратного напряжения, когда расширяется запрещенная зона, область перехода сильно обедняется носителями, при этом процесс рекомбинации замедляется и процесс генерации оказывается неуравновешенным. Избыток генерируемых носителей захватывается электрическим полем и переносится в нейтральные слои (электроны в n-область, а дырки - в p-область). Эти потоки и образуют ток термогенерации. Ток термогенерации слабо зависит от температуры и сильно зависит от величины приложенного обратного напряжения; уместно вспомнить упрощенную формулу зависимости скорости движения электрона в ускоряющем электрическом поле от приложенного напряжения:
.
С увеличением приложенного напряжения скорость электрона увеличивается, растет число соударений его с атомами в узлах решетки (ударная ионизация), что приводит к появлению новых носителей заряда. Увеличение числа зарядов приводит к увеличению тока неосновных носителей, температура перехода увеличивается, а это, в свою очередь, приводит к нарушению ковалентных связей и росту носителей. Процесс может принять лавинообразный характер и привести к пробою p-n-перехода (рис. 1.1). Различают следующие виды пробоев:
туннельный (при напряженности поля перехода свыше 106 В/см, до точки «а»);
электрический (вызван ударной ионизацией, после точки «а»), этот тип пробоя иногда называют лавинным, при этом в переходе идут обратимые процессы и после снятия обратного напряжения он восстанавливает свои рабочие свойства. При электрическом пробое нарастание тока почти не вызывает изменения напряжения, что позволило использовать эту особенность характеристики для стабилизации напряжения;
тепловой возникает в результате сильного разогрева перехода (после точки «б»); процессы, которые идут при этом в переходе, необратимы, и рабочие свойства перехода после снятия напряжения не восстанавливаются (вот почему в справочной литературе строго ограничивается величина обратного напряжения на переходах диодов и транзисторов).
Рис. 1.1. ВАХ реального электронно-дырочного p-n-перехода
Вывод. Анализируя прямую и обратные ветви вольтамперной характеристики, приходим к выводу, что p-n-переход хорошо проводит ток в прямосмещенном состоянии и очень плохо в обратносмещенном, следовательно, p-n-переход имеет вентильные свойства, поэтому его можно использовать для преобразования переменного напряжения в постоянное, например, в выпрямительных устройствах в блоках питания.
1.2.1. Температурные свойства p-n-перехода
Уравнение (1.1) содержит температурно-зависимые параметры - I0 и j t.
I0 - тепловой ток, или ток насыщения. Для идеального перехода I0 определяет величину обратного тока, а в реальных переходах I0 намного меньше обратного тока. Ток Iосильно зависит от температуры (рис. 1.1): даже незначительные изменения температуры приводят к изменению Iо на
несколько порядков.
Максимально допустимое увеличение обратного тока диода определяет максимально допустимую температуру для него, которая составляет
80-100 оС для германиевых диодов и 150-200 оС для кремниевых.
Минимально допустимая температура для диодов обычно лежит в пределах от 60 до -70оС.
У германиевых переходов ток I0 на шесть порядков больше, чем у кремниевых, поэтому при одинаковых условиях у них прямые напряжения на
0,35 В меньше и в зависимости от режима составляют 0,25-0,15 В (напряжение отпирания у германиевых переходов при повышении температуры вырождается почти в "0").
На рис. 1.1 прямая ветвь характеристики, снятая при 70 оС, сместилась влево: с повышением температуры вступает в силу собственная проводимость полупроводника, число носителей увеличивается, так как усиливается процесс термогенерации. Обратная же ветвь ВАХ (рис. 1.1) смещается вправо, то есть с повышением температуры до +70 оС электрический пробой в переходе наступает раньше, чем при температуре +20 оС. При увеличении обратного напряжения к тепловому току добавляется ток термогенерации. В сумме эти два тока образуют через обратносмещенный переход обратный ток Iобр. При изменении температуры новое значение обратного тока можно оп-
ределить из соотношения
(1.5)
где Iобр.20 оС - значение обратного тока при температуре не выше 27 оС (берется из справочной литературы);
А - коэффициент материала, из которого выполнен полупроводниковый прибор (Агермания = 2, Акремния = 2,5);
j t - температурный потенциал, который при комнатной температуре равен 0,025 В, а при другой температуре j t можно определить по формуле
(1.6)
Таким образом, при увеличении температуры обратный ток насыщения увеличивается примерно в два раза у германиевых и в два с половиной раза у кремниевых диодов (1.5).
1.2.2. Частотные и импульсные свойства p-n-перехода
При воздействии на p-n-переход напряжения высокой частоты начинают проявляться инерционные свойства перехода: распределение носителей при достаточно быстрых изменениях тока или напряжения требует определенного времени. Внешнее напряжение изменяет ширину запрещенной зоны, высоту потенциального барьера, граничную концентрацию носителей (величину объемных зарядов в переходе), следовательно, p-n-переход обладает емкостью. Для p-n-перехода характерны два состояния (прямо- и обратносмещенное), поэтому эту емкость можно условно разделить на две составляющие - барьерную и диффузионную. Деление емкостей на барьерную и диффузионную является чисто условным, но, учитывая тот факт, что значения их сильно отличаются, на практике понятие барьерной емкости удобнее использовать для обратносмещенного p-n-перехода, а диффузионной - для прямосмещенного.
Барьерная емкость отражает перераспределение носителей в p-n-переходе, то есть эта емкость обусловлена нескомпенсированным объемным зарядом, сосредоточенным по обе стороны от границы перехода. Роль диэлектрика у барьерной емкости выполняет запрещенная зона, практически лишенная носителей. Барьерная емкость зависит от площади перехода, от концентрации примеси, от напряжения на переходе:
где П - площадь p-n-перехода (в зависимости от площади перехода барьерная емкость может изменяться от единиц до сотен пикофарад); x - диэлектрическая проницаемость полупроводникового материала; Nд - концентрация примеси; U - напряжение на переходе.
Значение барьерной емкости колеблется от десятков до сотен пФ. При постоянном напряжении на переходе барьерная емкость определяется отношением , а при переменном .
Особенностью барьерной емкости является то, что она изменяется при изменении напряжения на переходе (рис. 1.2); изменение барьерной емкости при изменении напряжения может достигать десятикратной величины, то есть эта емкость нелинейна, и при увеличении обратного напряжения барьерная емкость уменьшается, так как возрастает толщина запирающего слоя (площадь p-n-перехода).Рис. 1.2. Зависимость барьерной емкости от напряжения