Сущность стабильности коэффициента усиления усилителя, охваченного ООС, заключается в следующем. Если за счет перечисленных факторов произошло увеличение коэффициента усиления на величину DК, то напряжение обратной связи увеличится на соответствующую величину DUос, а следовательно, напряжение на входе усилителя Uвх уменьшится. Если же произошло уменьшение усиления, то напряжение обратной связи уменьшится, а напряжение на входе усилителя возрастет.
Пример. В усилителе, охваченном отрицательной обратной связью (ООС), известно: коэффициент усиления усилителя без ООС равен К = 100; коэффициент передачи обратной связи g = 0,2.
Требуется определить, как изменится коэффициент усилителя при наличии ООС, если коэффициент усиления К собственно усилителя (без ООС) увеличился на 10 %.
Коэффициент усиления при наличии в схеме усилителя ООС (2.31)
.
Новое значение коэффициента усиления усилителя с ООС при изменении собственно коэффициента усиления усилителя на 10 %:
.
Расчет показывает, что при изменении коэффициента усиления усилителя без ООС на 10 %, коэффициент усиления усилителя с ООС изменился всего лишь на 2 %, что практически не скажется на работе усилителя, то есть ООС действительно обеспечивает стабильность параметру «К».
Вывод. ООС в усилителе препятствует любому изменению величины коэффициента усиления напряжения и этим оправдано ее применение в усилительных устройствах. За счет ООС в схемах удается отслеживать и корректировать положение рабочей точки усилителя на ВАХ, а, следовательно, и изменения коэффициента усиления усилителя.
3. УНИПОЛЯРНЫЕ (ПОЛЕВЫЕ) ТРАНЗИСТОРЫ
3.1. Общие сведения
В полевых транзисторах в образовании тока участвуют носители зарядов одного знака (или дырки, или электроны). Основным способом движения носителей можно считать дрейфовый, так как процессы инжекции и диффузии практически отсутствуют. В основе работы полевых транзисторов лежит эффект поля. Металлический электрод, создающий эффект поля, называется затвором. Стоком называют электрод, на который поступают рабочие носители канала, а истоком, - от которого эти носители движутся (исток обычно соединяют с основной пластиной полупроводника - подложкой). Проводящий слой, по которому проходит рабочий ток, называется каналом. Каналы могут быть приповерхностными и объемными. В транзисторах с приповерхностным каналом затвор отделен от канала слоем диэлектрика (МДП или МОП-транзисторы), а при объемном канале - обедненным слоем, который создается с помощью электронно-дырочного p-n-перехода.
Сущность процессов, связанных с образованием канала в полевом транзисторе с управляемым электронно-дырочным p-n-переходом, при изменении напряжения на переходе можно схематично представить так, как это изображено на рис. 3.1.
Рис. 3.1. Схематичное изображение образования канала
С целью увеличения глубины модуляции канала сплавной переход выполнен в виде кольца, охватывающего канал, в результате чего переход образует диафрагму, диаметр отверстия которого изменяется в такт с изменением напряжения на переходе. Диафрагма - это и есть канал у полевого транзистора (отсюда и появилось название у этого типа транзисторов - канальные).
Что общего у транзисторов с приповерхностным и объемным каналами?
1. Отсутствие инжекции и диффузии, а основной способ движения носителей - дрейф.
2. Управляющим электродом является затвор. Управление выходным током осуществляется с помощью поперечного электрического поля, то есть полевые транзисторы работают в режиме заданного напряжения на затворе. В принципе изменять ток стока можно с помощью и напряжения на стоке, но его влияние на ток гораздо слабее, чем затвора, поэтому командное место в управлении током принадлежит затвору.
3. Входная цепь полевых транзисторов не потребляет тока, так как управляющая цепь отделена от канала либо диэлектриком (у МОП-транзисторов), либо обратносмещенным p-n-переходом (у канальных).
4. За счет того, что входные цепи не потребляют токов, нагрузочная способность полевых транзисторов в ключевом режиме высокая: на один МОП-ключ можно нагрузить свыше 50 идентичных ключей.
5. Входное сопротивление у полевых транзисторов велико.
3.2. Принцип действия, статические ВАХ полевого транзистора с объемным каналом (с управляемым p-n-переходом)
На рис. 3.2 дана модель полевого транзистора с управляемым p-n- переходом. На границе раздела двух областей образовался p-n-переход, поле в области которого препятствует проникновению основных носителей - электронов из n-канала в p-область.
Рис. 3.2. Модель полевого транзистора с управляемым p-n-переходом
Электронно-дырочный p-n-переход находится в обратносмещенном состоянии, и в цепи затвора течет лишь ток неосновных носителей Iзо. В маломощных полевых транзисторах ток Iзо настолько мал, что им пренебрегают, но в мощных транзисторах и в диапазоне высоких частот влияние этого тока возрастает и с ним приходится считаться. Для кремниевых p-n-переходов обратный ток составляет менее 10--11 А, и, таким образом, усиление мощности обеспечивается малой величиной входного тока.
Переход у полевого канального транзистора несимметричный, так как по мере приближения к стоку потенциал увеличивается и получается, что к верхней части перехода прикладывается большее напряжение. В схеме
рис. 3.2:
евх - генератор переменной ЭДС на входе .
Rc - сопротивление нагрузки в цепи стока;
Ес - источник постоянного напряжения в цепи стока, создает ускоряющее поле, под действием которого носители направленно движутся от истока к стоку;
Есм - источник смещения, создает поперечное электрическое поле, с помощью которого регулируется ширина запрещенной зоны p-n-перехода, т.е. изменяется поперечное сечение канала, и таким образом, регулируется ток стока (выходной ток); при Uзи = 0 сечение канала будет максимальным, ток стока и крутизна наибольшими, что хорошо просматривается на стокозатворных ВАХ транзистора (рис. 3.3). В зависимости от типа канала полярность напряжения на затворе меняется.
Рис. 3.3. Стокозатворные (передаточные) ВАХ транзисторов с разным типом каналов: а - для n-канала; б - для p-канала
Практическую ценность стокозатворной характеристики переоценить трудно: она позволяет выбрать режим транзистора по постоянному току, оценить усилительные свойства транзистора, выяснить характер и оценить уровень нелинейных искажений усиливаемого сигнала.
Анализ стокозатворных ВАХ полевого канального транзистора показывает, что такие транзисторы работают строго при одной полярности напряжения на затворе: если произойдет смена полярности напряжения на затворе, то p-n-переход приходит в прямосмещенное состояние, транзистор перестает быть униполярным, так как начнется инжекция неосновных носителей в канал. Кроме того, сопротивление входной цепи резко уменьшается, во входной цепи может потечь недопустимо большой ток, что приведет к гибели транзистора. Таким образом, полевой канальный транзистор работает только в режиме обеднения канала.
Напряжение на затворе, при котором перекрывается токопроводящий канал, называется напряжением отсечки Uотс. Если напряжение Uзи меньше Uотс и подано напряжение на участок сток-исток Uси, то через транзистор будет протекать ток.
Рассмотрим процесс получения статических стоковых (выходных) ВАХ канального транзистора.
С увеличением напряжения Uси растет обратное напряжение на участке сток-затвор, следовательно, ширина запрещенной зоны перехода будет увеличиваться в направлении от истока к стоку. Когда разность напряжений Uси- Uзи станет равной напряжению отсечки, прекращается прирост тока стока, несмотря на дальнейшее увеличение напряжения на стоке
(рис. 3.5). Такое состояние транзистора наступает в момент образования горловины канала, при этом ток стока называется током насыщения, а напряжение на участке сток-исток - напряжением насыщения
Модуляцию поперечного сечения канала при увеличении напряжения на стоке и, как результат, образование горловины канала в транзисторе можно схематично представить рис. 3.4, а, б, в.