Смекни!
smekni.com

ТЭС - расчет канала (стр. 4 из 5)

Н'(А) = Н(А)/Т

где Т – длительность элементарной посылки.

Рассчитаем значение Н'(А) для Т = 5 мкс: Н'(А) = 0.469/5×10-6 = 93800 бит.

Повышение значения производительности источника в нашем случае можно сделать за счет применения статистического кодирования. Пусть ансамбль сообщений А содержит К=8 сообщений, К - объем алфавита. Вероятности этих сообщений будут следующие:

Р(000)=0.9×0.9×0.9= 0,729

Р(001)= Р(010)= Р(100)= 0.9×0.9×0.1 = 0,081

Р(011)= Р(101)= Р(110)= 0.9×0.1×0.1 = 0,009

Р(111)= 0.1×0.1×0.1 = 0,001

Осуществим статистическое кодирование 8 трехбуквенных комбинаций, состоящих из элементов двоичного кода 0 и 1, методом Хаффмена.

Методика Шеннона-Фано не всегда приводит к однозначному построению кода. От указанного недостатка свободна методика построения кода Хаффмана. Она гарантирует однозначное построение кода с наименьшим, для данного распределения вероятностей, средним числом символов на группу.

Суть его сводится к тому, что наиболее вероятным исходным комбинациям присваиваются более короткие преобразованные комбинации, а наименее вероятным - более длинные. За счет этого среднее время, затраченное на посылку одной кодовой комбинации, становится меньше.

Для двоичного кода методика сводится к следующему:

1. Буквы алфавита выписываются в основной столбец в порядке убывания вероятностей.

2. Две последние буквы, с наименьшими вероятностями, объединяют в одну и приписывают ей суммарную вероятность объединяемых букв.

3. Буквы алфавита сортируются заново.

4. Операции 1-3 повторяются.

Процесс повторяется до тех пор, пока не получим единственную букву с вероятностью равной 1.

Таблица 1

Комбинации

Буквы

Вероятности

Вспомогательные столбцы

1

2

3

4

5

6

7

000

Z0

0,729

0,729

0,729

0,729

0,729

0,729

0,729

1

001

Z1

0,081

0,081

0,081

0,081

0,081

0,162

0,271

010

Z2

0,081

0,081

0,081

0,081

0,081

0,109

100

Z3

0,081

0,081

0,081

0,081

0,109

011

Z4

0,009

0,009

0,018

0,028

101

Z5

0,009

0,009

0,010

110

Z6

0,009

0,010

111

Z7

0,001

Согласно таблице 6.1. строим граф кодового дерева по следующему правилу:

Из точки с вероятностью «1» направляем две ветви. Ветви с большей вероятностью приписываем 1 и откладываем влево, а ветви с меньшей вероятностью приписываем 0 и откладываем вправо. Такое последовательное ветвление продолжим до тех пор, пока не дойдем до вероятности каждой отдельной буквы. Кодовое дерево изображено на рисунке 6.1. Теперь двигаясь по кодовому дереву с верху вниз можно для каждой буквы записать новую кодовую комбинацию.

1 0 0.271 0 0.109 0 0.028 0 0.010 0 Z7(0.001)

1 1 1 1 1

Z0(0.729) 0.162 Z3 (0.081) 0.018 Z6(0.009)

1 0 1 0

Z1(0.081) Z2(0.081) Z4(0.009) Z5(0.009)

Рис. Граф кодового дерева.

Получили новые кодовые комбинации:

Z0

Z1

Z2

Z3

Z4

Z5

Z6

Z7

1

011

010

001

00011

00010

00001

00000

Определим среднюю длину полученных комбинаций по формуле:

lср = k×p(а0)+...+ k×p(аК-1); где К - объем алфавита источника, к - число повторений элемента в кодовом дереве, р(..) - вероятности элементов.

Для полученного кода средняя длина комбинаций

=1×p(Z0)+ 3×p(Z1)+ 3×p(Z2)+ 3×p(Z3)+ 5×p(Z4)+5×p(Z5)+5×p(Z6)+5×p(Z7)= 0,729+(3×0,081)+(3×0,081)+(3×0,081)+(5×0,009)+(5×0,009)+(5×0,009)+(5×0,001)= 1,59(бит/элемент)

Эта средняя длина меньше 3Т, но фактически полученные комбинации содержат информацию о трех элементарных сигналах, поэтому средняя длина новых комбинаций в расчете на 1 букву первоначального двоичного кода составляет: 1,59/3= 0,53. В результате средняя длительность полученных комбинаций в расчете на 1 элементарную посылку Т' меньше
Т - заданной длительности элементарной посылки.

Средняя длительность полученных комбинаций будет равна:

Тэф= Нср×Т=0.53×5×10-6=2.65×10-6

Таким образом, средняя длина символа, после статического кодирования, стала меньше.

Найдем производительность источника после кодирования :

Производительность источника при эффективном кодировании

Н'эф(А)= Н(А)/Т = 0.469 /2.65×10-6 = 176981.13 = 1.77×105 бит/с.

Полученное значение выше найденного ранее, то есть в результате применения эффективного кодирования повышается производительность источника.

2.7 Пропускная способность

Для симметричного канала пропускная способность С (бит/с) определяется выражением для непрерывного канала:

С= Dfк×C1 = 5×Fc×log2(1+Рс/Рш) – формула Шеннона.

Значение отношения мощности сигнала к мощности помехи Рс/Рш= h2=160 найдено в разделе 3.

С = 5 ×3.4 × 103×log2(1+160) = 124625.587 (бит/с).

Для канала с ИКМ

С= Dfк×C1 = 5/Т×log2(1+Рс/Рш)

Значение отношения мощности сигнала к мощности шума Рс/Рш= h2=2.8, найдено также в разделе 3.

С = 5 / 5×10-6 ×log2(1+1)= 1925999,419 = 2×106(бит/с).

Из последнего значения С видно, что пропускная способность канала связи тем выше, чем меньше время элементарной посылки.

Сравним производительность источника с пропускной способностью канала

1.77×105 бит/с=Н'(А) << C=2×106 бит/с.

Т.е. канал связи с пропускной способностью С пригоден для передачи информации от источника с производительностью H'(A).

2.8 Помехоустойчивое кодирование

Разрабатываемая система связи предназначена для ИКМ передачи аналоговых сигналов, либо для передачи данных. Для уменьшения вероятности ошибок можно применить помехоустойчивое кодирование. Его сущность - введение при кодировании дополнительной избыточности, что увеличивает возможность обнаружения и исправления ошибок. Применяемые при этом коды называются корректирующими.

Искаженная кодовая последовательность может иметь нулевую, или очень близкую к нему вероятность, что позволяет обнаружить и в некоторых случаях исправить ошибки. Для того чтобы код обладал корректирующими способностями, в кодовой последовательности должны содержаться дополнительные (избыточные) символы, предназначенные для корректирования ошибок. Чем больше избыточность кода, тем выше его корректирующая способность.

По полученным выше данным определим, сколько дополнительных символов мы можем использовать для помехоустойчивого кодирования для нашей системы. Полоса пропускания Df = 5/Т = 5×n×Fc, используя данную формулу выразим n – количество двоичных символов, которые можно поместить между двумя соседними значениями закодированного передаваемого сигнала.

.

Из этих 58 символов 7 являются информационными, как было вычислено в главе 5. Поэтому для помехоустойчивого кодирования можно использовать 51 символ.

Кратность ошибки D - количество неверно принятых символов кодовой комбинации (вес вектора ошибки). Вероятность ошибочного декодирования при коррекции ошибок Pош

. Вероятность необнаруженной ошибки Pно при обнаружении ошибок Pно
, где dmin/2 – наибольшая целая часть этого соотношения;

- биноминальный коэффициент, равный числу различных сочетаний D ошибок в блоке длиной n.