0.449 0.413 0.379 0.347 0.319 0.293 0.270 0.249
0.229 0.213 0.199 0.186 0.174 0.164 0.155 0.148
максимальное значение коэффициента заполнения канала пучком (b) по результатам расчета составляет b = 0,875. Такое значение коэффициента заполнения канала пучком является недопустимо высоким и может служить причиной большого токооседания пучка на стенки пролетного канала в динамическом режиме работы прибора. В связи с этим встает задача оптимизации данной ЭОС с целью уменьшения радиуса формируемого пучка при сохранении значения первеанса.
Анализ результатов расчета представленный на рис.2.2 показывает, что имеется две причины, приводящие к увеличению радиуса пучка в выходной части прибора:
- неламинарность электронных траекторий в формируемом электронной пушкой пучке. Крайняя траектория пучка формируемого пушкой пересекает все остальные траектории, близко подходит к оси, а затем, расширяется и приводит к увеличению заполнения канала пучком;
- не оптимальность фазы влета пучка во второй реверс. Как следует из рис.2.2, при подходе ко второму реверсу электронный пучок является расширяющимся. Проходя зону реверса, пучок дополнительно расширяется на участке с малыми значениями магнитного поля и поэтому достигает недопустимо большого значения радиуса в выходной части прибора.
Для устранения указанных причин увеличения радиуса электронного потока необходимо провести расчет оптимизацию электронной пушки прибора, а также расчет и оптимизацию распределения магнитного поля в системе.
2.4. Расчет и оптимизация электронной пушки.
Для оптимизации параметров электронной пушки использовалась совокупность методов синтеза и анализа. При расчете ЭОС методом синтеза использовалась программа «Синтез» описанная в параграфе 2.1, а при расчете ЭОС методом анализа использовалась программа «Алмаз» описанная в параграфе 2.2.
При расчете электронной пушки методом синтеза задавались три основные параметра:
Рm – микропервеанс электронного потока;
S – линейную сходимость электронного потока;
b – коэффициент заполнения пролетного канала электронным потоком.
При расчете, значения этих параметров были следующие: Рm = 0,57 мкА/В3/2, S = 3 , b = 0,5. Результаты расчета электронной пушки методом синтеза показаны на рис.2.3. Как следует из рисунка, пушка формирует ламинарный электронный поток, однако форма фокусирующих электродов пушки является не технологичной. Для упрощения формы заменим прикатодный фокусирующий электрод и анод, как показано на рисунке. Электронную пушку с упрощенной формой фокусирующих электродов будем рассчитывать методом анализа по программе «Алмаз». Изменяя высоту фокусирующего электрода, получим заданное значение первеанса и сходимость при ламинарной структуре электронных траекторий. Окончательный оптимизированный вариант электронной пушки рассчитанных по программе «Алмаз» показан на рис.2.4.
Далее новая электронная пушка, результаты расчета которой приведены на рис.2.2, была поставлена в систему, и был выполнен новый расчет ЭОС от катода до конца пролетного канала. Результаты расчета показаны на рис.2.5, а соответствующий файл с исходными данными приведен в таблице 2.2. Сравнивая рис.2.2 и рис.2.5 можно сделать вывод о том, что применение новой электронной пушки улучшило ламинарность электронных траекторий (теперь крайняя
Результаты расчета электронной пушки методом синтеза.
Рис.2.3.
Результаты расчета электронной пушки методом анализа.
Рис.2.4.
Результаты расчета ЭОС с оптимизированной электронной пушкой.
Рис.2.5.
Таблица 2.2.
Файл исходных данных к рисунку 2.5.
RU I RF I ZU I TTT I FH I H I VQ I U I
28. 5. 55. 270. 33. 0.2 0.4 52000.
FK I RK I HK I ZO I Y1 I Z1 I Y2 I Z2 I
0.4 9. 1.11 9. 0. 0. 0. 0.
FE I GE I RM I NP I IWN I IWP I NPR I NS I
19. 0.001 1. 10. 1.0 7.0 10.0 2.
NPL I TK I NEG I I I I I I
10. 0. 1.
X15 I I I I I I I I
-0.3 45. 85. 125. 165. 205. 245. 285.
325. 365.
X4 I I I I I I I I
0.0 0.0 1.11 4.34 0.0 9. 0.0 9.
-1.0 4.34 1.11 4.34 0.0
-1.0 4.7 2.2 4.7 0.0
2.2 4.7 2.4 4.9 0.0
2.4 4.9 2.4 29. 0.0
12.7 29. 12.7 3.25 1.0
12.7 3.25 295. 3.25 1.0
295. 3.25 295. 0. 1.0
BM I R1 I R2 I TM I HM I NM I I I
1000. 0.3 0.7 -5.26 1.5 200.
XM I I I I I I I I
0.014 0.014 0.015 0.015 0.015 0.015 0.015 0.015
0.015 0.014 0.011 0.002 -0.021 -0.092 -0.247 -0.486
-0.674 -0.754 -0.787 -0.798 -0.803 -0.805 -0.805 -0.806
-0.805 -0.805 -0.804 -0.804 -0.803 -0.802 -0.801 -0.801
-0.800 -0.799 -0.799 -0.800 -0.801 -0.801 -0.801 -0.802
-0.804 -0.805 -0.807 -0.808 -0.811 -0.813 -0.814 -0.816
-0.817 -0.819 -0.821 -0.822 -0.823 -0.823 -0.824 -0.823
-0.822 -0.821 -0.820 -0.817 -0.813 -0.802 -0.780 -0.717
-0.578 -0.330 -0.097 0.087 0.320 0.615 0.823 0.906
0.942 0.956 0.964 0.969 0.972 0.976 0.978 0.980
0.982 0.984 0.985 0.986 0.986 0.986 0.986 0.986
0.986 0.986 0.986 0.986 0.986 0.985 0.985 0.985
0.984 0.985 0.985 0.984 0.984 0.984 0.984 0.983
0.982 0.981 0.980 0.979 0.977 0.975 0.973 0.970
0.966 0.962 0.956 0.942 0.914 0.834 0.661 0.368
0.106 -0.091 -0.333 -0.613 -0.800 -0.873 -0.905 -0.917
-0.925 -0.929 -0.932 -0.935 -0.938 -0.940 -0.943 -0.945
-0.946 -0.948 -0.949 -0.950 -0.950 -0.951 -0.951 -0.952
-0.952 -0.953 -0.953 -0.954 -0.954 -0.955 -0.957 -0.958
-0.958 -0.958 -0.959 -0.960 -0.960 -0.961 -0.962 -0.962
-0.961 -0.960 -0.959 -0.958 -0.957 -0.955 -0.951 -0.946
-0.937 -0.917 -0.876 -0.768 -0.578 -0.320 -0.092 0.089
0.278 0.451 0.557 0.586 0.583 0.557 0.524 0.487
0.449 0.413 0.379 0.347 0.319 0.293 0.270 0.249
0.229 0.213 0.199 0.186 0.174 0.164 0.155 0.148
траектория электронного потока не пересекает остальные траектории пучка). Однако радиус электронного потока в выходной части прибора уменьшился не значительно (приблизительно на 7%).
Как следует из рис.2.5 основной причиной увеличения радиуса пучка в выходной части клистрона является не оптимальность фазы влета пучка во второй реверс. Для улучшения указанной фазы влета необходимо провести расчет и оптимизацию распределения магнитного поля в системе с новой электронной пушкой.
2.5. Расчет и оптимизация распределения магнитного поля в системе. Оптимальный вариант построения ЭОС.
Анализ результатов расчета представленный на рис.2.5 показывает, что для улучшения фазы влета пучка во второй реверс необходимо либо увеличивать магнитное поле, либо уменьшать. При увеличении амплитуды поля во второй области длина волны пульсаций пучка уменьшится и можно достичь того, что во второй реверс пучок не будет входить расходящимся. Это приведет к уменьшению радиуса пучка в области за вторым реверсом.
Аналогичный результат можно получить, если значительно уменьшить амплитуду магнитного поля во второй области. В этом случае длина волны пульсаций увеличится и можно достичь того, что в область второго реверса электронный пучок будет поступать сходящимся, что приведет к уменьшению радиуса пучка в области за вторым реверсом. Оба эти метода были исследованы практически. На рис.2.6 приводятся результаты расчета пучка от катода до конца пролетного канала в ЭОС, в которой амплитуда магнитного поля везде увеличена на 10 % по сравнению с расчетом, показанным на рис.2.5. В первой области поле увеличено с 803 до 883 Гс., во второй области поле увеличено с 986 до 1084 Гс., в третьей области поле увеличено с 960 до
Результаты расчета ЭОС с увеличенным на 10 % магнитным полем.
Рис.2.6.
Таблица 2.3
Файл исходных данных к рисунку 2.6.
RU I RF I ZU I TTT I FH I H I VQ I U I
28. 5. 55. 27 33 0.2 0.4 52000.
FK I RK I HK I ZO I Y1 I Z1 I Y2 I Z2 I
0.4 9. 1.11 9. 0. 0. 0. 0.
FE I GE I RM I NP I IWN I IWP I NPR I NS I
19. 0.001 1. 10. 1.0 7.0 10.0 2.
NPL I TK I NEG I I I I I I
10. 0. 1.
X15 I I I I I I I I
-0.3 45. 85. 125. 165. 205. 245. 285.
325. 365.
X4 I I I I I I I I
0.0 0.0 1.11 4.34 0.0 9. 0.0 9.
-1.0 4.34 1.11 4.34 0.0
-1.0 4.7 2.2 4.7 0.0
2.2 4.7 2.4 4.9 0.0
2.4 4.9 2.4 29. 0.0
12.7 29. 12.7 3.25 1.0
12.7 3.25 295. 3.25 1.0
295. 3.25 295. 0. 1.0
BM I R1 I R2 I TM I HM I NM I I I
1000. 0.3 0.7 -5.26 1.5 200.
XM I I I I I I I I
0.014 0.014 0.015 0.015 0.015 0.015 0.015 0.015
0.015 0.014 0.011 0.002 -0.021 -0.092 -0.247 -0.486
-0.674 -0.754 -0.787 0.798 -0.803 -0.805 -0.805 -0.806
-0.805 -0.804 -0.804 -0.804 -0.803 -0.802 -0.801 -0.801
-0.800 -0.799 -0.799 -0.800 -0.801 -0.801 -0.801 -0.802
-0.804 -0.805 -0.807 -0.808 -0.811 -0.813 -0.814 -0.816
-0.817 -0.819 -0.821 -0.822 -0.823 -0.823 -0.824 -0.823
-0.822 -0.821 -0.820 -0.817 -0.813 -0.802 -0.780 -0.717
-0.578 -0.330 -0.097 0.087 0.320 0.615 0.823 0.906
0.942 0.956 0.964 0.969 0.972 0.976 0.978 0.980
0.982 0.984 0.985 0.986 0.986 0.986 0.986 0.986
0.986 0.986 0.986 0.986 0.986 0.985 0.985 0.985
0.984 0.985 0.985 0.984 0.984 0.984 0.984 0.983
0.982 0.981 0.980 0.979 0.977 0.975 0.973 0.970
0.966 0.962 0.956 0.942 0.914 0.834 0.661 0.368
0.106 -0.091 -0.333 -0.613 -0.800 -0.873 -0.905 -0.917
-0.925 -0.929 -0.932 -0.935 -0.938 -0.940 -0.943 -0.945
-0.946 -0.948 -0.949 -0.950 -0.950 -0.951 -0.951 -0.952
-0.952 -0.953 -0.953 -0.954 -0.954 -0.955 -0.957 -0.958
-0.958 -0.958 -0.959 -0.960 -0.960 -0.961 -0.962 -0.962
-0.961 0.960 -0.959 -0.958 -0.957 -0.955 -0.951 -0.946
-0.937 -0.917 -0.876 -0.768 -0.578 -0.320 -0.092 0.089
0.278 0.451 0.557 0.586 0.583 0.557 0.524 0.487
0.449 0.413 0.379 0.347 0.319 0.293 0.270 0.249
0.229 0.213 0.199 0.186 0.174 0.164 0.155 0.148
1056 Гс. Соответствующий файл исходных данных приведен в таблице 2.3.
Из рис.2.6 следует, что увеличение магнитного поля на 10 % привело к заметному уменьшению радиуса пучка (приблизительно на 30%). В этом случае электронный поток, входящий во второй реверс не расходится, а практически параллелен оси пролетного канала. Казалось бы, что если еще более увеличить магнитное поле, то в выходную область прибора электронный поток будет входить сходящимся, что приведет к дальнейшему улучшению параметров пучка в этой области.
Однако практически в данном приборе, из-за опасности насыщения перемычек между соседними пролетными каналами в полюсных наконечниках прибора изготовленных из магнитомягкого материала, нельзя переходить на вариант с увеличенной амплитудой магнитного поля (по сравнению с амплитудой указанными на рис.2.5).