Смекни!
smekni.com

Реверсная магнитная фокусирующая система мощного многолучевого клистрона (стр. 5 из 16)

В настоящее время для изготовления датчиков используются полупроводники, обладающие большими подвижностями носителей тока. К ним относятся элементы Те, Вi, Ge, а также некоторые бинарные соединения со структурой цинковой обманки: НgSe¸ НgТе, InAs¸ InSb¸ Pbse, PbTe и AgTe.

Датчики э.д.с. Холла используются в виде тонких пластинок, которые вырезаются с помощью алмазных дисковых пил из монокристалла или поликристалла. Отрезанные пластинки шлифуются и подвергаются специальной обработке. Пленочные датчики выполнятся из НgSe и НgТе в виде тонких пленок (до 10 мк). Они получаются методом напыления полупроводника на стеклянный или слюдяной базис, через определенные трафареты. Поверхность базиса предварительно тщательно очищается. После чего наносятся металлические электроды нужной формы. Электроды изготовляются путем испарения меди в вакууме или методом вжигания серебряной пасты. Только после этого на базис, нагретый до 1000, наносится слой полупроводника. Полученные пленочные датчики подвергаются отжигу при температуре 100 – 1100, чтобы обеспечить лучшую стабильность их параметров.

Чувствительность отожженных датчиков в течение одного года изменяется только на 2 – 3%. Для предохранения датчиков от различных механических повреждений пленки полупроводника покрываются тонким слоем клея БФ-2. При изготовлении датчиков э.д.с. Холла большое внимание уделяется получению хорошего электрического контакта с полупроводником.

Контакты выполняются таким образом, чтобы они не вызывали ни ослабления, ни искажения сигнала, а при работе на переменном токе они не должны обладать выпрямительными свойствами. Для этого или шлифуется поверхность полупроводника, или наносится в некоторой ее области слой очень высокой проводимости, сделанный из того же полпроводника, что и основной слой датчика, но с большей концентрацией носителя тока.

1.5. Постановка задачи.

Как следует из проделанного обзора литературы расчет фокусирующей системы мощного клистрона с реверсной магнитной фокусировкой представляет собой решение сложной задачи электронной оптики. Из обзора также следует, что в последние годы разработаны аналитические и численные методы расчета ЭОС, использование которых позволяет сравнительно быстро провести проектирование ЭОС в том числе и с реверсной фокусировкой.

Основной целью данной работы является использование современных компьютерных программ расчета для анализа и оптимизации клистрона КИУ-147, разработанного около 15 лет тому назад. Этот клистрон используется в ускорительной технике и имеет следующие параметры:

Импульсная мощность, мВт – 5;

Средняя мощность, кВт – 25;

Частота, мГц – 2450;

КПД, % - 44;

Коэффициент усиления, дБ – 50.

В клистроне применяется двух реверсная магнитная фокусирующая система на радиально намагниченных магнитах которая формирует сорока лучевой электронный поток с суммарным первеансом 20 ´ 10-6 А/В3/2.

Основной задачей дипломной работы является расчет конфигурации электронных лучей от катода до конца пролетного канала и последующая оптимизация ЭОС на основе современных компьютерных программ расчета.

Исходные данные:

1. Анодное напряжение – 52 кВ;

2. Количество электронных лучей – 40;

3. Расположение электронных лучей:

а) диаметр 84 – 21 луч,

б) диаметр 64 – 19 лучей;

4. Диаметр пролетного канала 6,5 – 8 мм;

5. Суммарный первеанс » 20 ´ 10-6 А/В3/2;

6. Диаметр катода – 8,6 мм.


2. Современные программы проектирования ЭОС и их использование для расчета и оптимизации реверсной магнитной фокусирующей системы мощного клистрона.

2.1. Программа «Синтез», созданная на основе использования теории В.Т. Овчарова [4].

Для расчета ЭОС методом Синтеза изложенном в параграфе 1.3.1 использована теория Овчарова. В этой теории все внутренние траектории вычисляются из крайней с помощью выражения

r

= q2j

Z

,

(2.1)

Ф0

l

где j - функция, описывающая крайнюю траекторию электронного пучка в цилиндрической системе координат; r - радиальная координата цилиндрической системы координат; Z - продольная координата цилиндрической системы координат; Ф0 - единица измерения радиальных размеров пучка; l - единица измерения продольных размеров пучка; q2криволинейная ортогональная координата.

Для крайней траектории пучка q2 = 1, для осевой q2 = 0, а для остальных 0< q2 <1.

Решение внутренней задачи формирования аксиально-симметричного электронного пучка сводится к решению следующего дифференциального уравнения:

j2u” + 2jj’u’ + 4ujj² + 2

j4h2 - jk4hk2

=

i

.

(2.2)

j2

Ö u

В этом уравнении j(x) - функция, описывающая крайнюю траекторию электронного пучка и по виду совпадающая c функцией j(Z/l) выражения (2.1); и(x) - функция, описывающая распределение потенциала на оси пучка; h(x) - функция, описывающая распределение магнитного поля на оси пучка; hk = h(0) - значение функции h(x) на катоде; jk = j(0) - значение функции j(x) на катоде.

Поскольку на оси пучка криволинейная система координат совпадает с цилиндрической, функции и(х) и h(x) тождественны функциям, описывающим соответственно распределение потенциала и магнитного поля на оси пучка в цилиндрической системе координат.

Штрихами в уравнении (2.2) обозначено дифференцирование по переменной х. Входящая в (2.2) постоянная вычисляется по формуле

= 0,297

H0 l

,

(2.3)

Ö V0

где Н0 - единица измерения магнитного поля, Э; l - единица измерения продольных размеров пучка, см; V0 - единица измерения потенциала, В.

Входящая в (2.2) постоянная i характеризует ток пучка. Она связана с микропервеансом пучка (по потенциалу V0) следующим соотношением:

i =

0,0605 Pm

,

(2.4)

m2

где m = (Ф0 / l); Pm - микропервеанс пучка, мкА/В3/2.

Внешняя задача в параксиальной теории формирования решается в криволинейной системе координат. При этом используется трансцендентное уравнение

V = u + m2q22 (u j j² +

2

´

j4 h2 - jk4 hk2

) +

4

j2

+

m²i

(1 – q22 + ln q22),

(2.5)

4Ö u

где V = U /U0 - потенциал иcкомой эквипотенциали.

Уравнение (2.5) решается относительно функции q2 (x) для каждого значения x.

В результате решения вычисляется функция q2*(x), определяющая форму искомой эквипотенциали в криволинейной ортогональной системе координат.

Далее делается переход от криволинейной системы координат к цилиндрической с помощью уравнения

dx

= -

m2 j(x) j¢(x)

q2 ,

(2.6)

d q2

1 + [m q2 j¢(x)]2

которое решается при следующих начальных условиях:

q2 = 0; x = x.

(2.7)

Интегрирование производится до q2 = q2*, где q2* - решение уравнения (2.5) для данного x.

Соответствующее q2* значение переменной x есть x*, которая используется дня вычисления цилиндрических координат r и z: