Недостатком НПЧ является низкий коэффициент мощности при регулировании выходного напряжения вследствие изменения угла регулирования и несинусоидальной формы кривой выходного напряжения, для улучшения которой должен быть применен фильтр, увеличивающий мощность всего преобразователя.
Для выбора элементов схемы выпрямителя определим мощность, которую необходимо получить на нагрузке. По условию необходимо регулировать уровнем напряжения до Uвых. max = 100 B на нагрузке с параметрами: Rн. = 1 Ом и Lн = 5 мГн. Отсюда определяем максимальную величину тока через нагрузку Id max = Ud max / Rн =100 /1= 100 А. Тогда максимальная величина мощности, отдаваемая в нагрузку равна Pmax = Ud max· Id max = 10 кВ·А.
Так как схема относится к семейству нулевых схем преобразователей, то необходимо использование трансформатора с выводом «нулевых» точек от двух вторичных обмоток. Необходимость в использовании трансформатора объясняется еще тем, что преобразователь будет работать в промышленных условиях со стандартным допуском напряжения питания
.Для выбора основных элементов силовой схемы (трансформатора, тиристоров) управляемого выпрямителя воспользуемся расчетными соотношениями (таб. 1).
Таблица 1.
Примечание: величины в скобках для идеального выпрямителя без потерь.
По таблице 1 определяем расчетную габаритную мощность трансформатора.
Sтр. =1,41 Рd =1,41*10кВА=14,6 кВА.
Из справочной литературы выбираем специализированный трансформатор ТСП – 160/0,7 – УХЛ4 (соответствует ТУ 16 – 717.052-79. Изготовитель УЭТМ г. Свердловск). Габаритные размеры: длина – L = 625 мм, ширина – В = 305мм, высота – Н = 385 мм. Полная масса 120 кг.
Величины потерь в данном трансформаторе:
Рх.х. =140 Вт, Рк.з. = 550 Вт при Uк.з. = 5,2 %, I х.х. = 10 %.
Расчет паразитных параметров трансформатора.
Выбранный трансформатор имеет габаритную мощность Sтр. = 14,6 кВА.
Найдем габаритную мощность на одну фазу:
Pгаб=Sтр /m=14,6*103/3=4866,667 ВА.
Схема соединений обмоток «звезда – звезда», следовательно, U1л=380В и U1ф.=220В (в соответствии с заданием).
Определим ориентировочную величину коэффициента трансформации c учетом колебаний уровня напряжения в промышленных сетях:
ктр.=U1ф./ U2=U1ф. / (0,94 Ud)=(220– 220*0,15)/(0.94*100)=1,989
Номинальный ток в первичной обмотке трансформатора:
I1ном=Pгаб/U1фА=4866,667/220=22,121 А
Из условий опыта холостого хода определяем:
I1х.х. =0,1*I1ном. = 0,1*22,121 = 2,212 А.
Полная кажущаяся мощность холостого хода равна
Sх.х. = U1н.*I1х.х. = 220*2,212 = 486,667 ВА.
Угол сдвига тока относительно напряжения
fхх=arccos(Pхх/3*Sхх)=arccos(140/3* 486,667)=84,497о.
Расчетное активное сопротивление, учитывающее потери на гистерезис и вихревые токи
Rор=Рхх/3*I2хх=140/3*2,2122=9,538 Ом.
Индуктивное сопротивление намагничивания
Хор=w*Lор= Rор*tgfхх=9,538*tg84,497=99 Ом.
Расчетная величина индуктивности намагничивания
Lор= Хор/w=99/2*p*50=0,315 Гн.
По данным опыта короткого замыкания аналогично находим:
Uк.з. = 0,052U1н. = 0,052*220 = 11,44 В;
Полная кажущаяся мощность короткого замыкания равна
Sк.з. = Uк.з.* I1н. = 11,44*22,121=253,066 ВА;
Угол сдвига тока относительно напряжения
fкз=arccos(Pкз/3*Sкз)=arccos(550/3* 253,066)=43,557о.
Расчетное активное сопротивление, учитывающее потери в обмотках трансформатора (приведение к вентильной стороне):
RрТР=( R2р+ R’1р) = Pкз/3*I2кз*К2тр=550/3*22,1212*1,9892=0,095 Ом.
Расчетная величина индуктивного сопротивления, обусловленного магнитными потоками рассеяния
(ХS2р+Х’S1р)=(R2р+ R’1р)tgfкз=0,095tg43,557=0,090 Ом.
Индуктивность рассеяния:
(LS2р+L’S1р)=(ХS2р+Х’S1р)/w=0,09/314=2,866*10-4 Гн.
Итак:
Ro= 9,538 Ом.
Xo= 99 Ом.
Lo= 0,315 Гн.
Ls=2,866*10-4 Гн.
Xs=0,09 Ом.
Rтр=0,095 Ом.
Выберем Т-образную схему замещения (рис. 3).
Рис .4 Схема замещения для одной фазы трансформатора.
Rтр=2(R2р+ R’1р)=(2*Ркз)/(3*I21Н )=2*550/3*22,1212=0,749 Ом.
Xs=2(R2р+ R’1р) tgfкз =0,749*tg43, 577=0,713 Ом.
Параметры схемы замещения.
продольная ветвь:
R1 » R’2 =rтр / 2 = 0,749/ 2 = 0,375 Ом;
Xs1 » X’s2 = Xs / 2 = 0,713 / 2 = 0,357 Ом.
поперечная ветвь:
R0 = 4,769 Ом; Xm = 49,5 Ом.
Основными параметрами по выбору полупроводникового прибора для данного преобразователя являются:
– предельный средний ток тиристора при соответствующей температуре;
– действующее значение тока через прибор;
– повторяющееся напряжение;
– критическая скорость нарастания прямого тока;
– критическая скорость нарастания прямого напряжения и др.
С использованием таблицы 1 определяем величины токов и напряжений, которые будут действовать на управляемые вентили в данной схеме преобразователя:
среднее значение тока через вентиль
IB= = 0,333*Id = 0,333*100 = 33,3 A;
максимальное обратное напряжение, прикладываемое к вентилю
Um обр. = 2,3Ud = 2,3*100 = 230 B;
величина действующего значения тока тиристора
IB = 0,55*Id = 0,55*100 = 55A;
Максимальная величина тока вентиля ImB = 0.5Id = 50 A.
Выбираем по справочной литературе тиристор типа ТО142–80, который имеет следующие предельно допустимые параметры:
повторяющееся импульсное напряжение в закрытом состоянии
Uзсп=600 – 1200 В;
повторяющееся импульсное обратное напряжение
Um обр.=600 – 1200 В;
максимально допустимый средний прямой ток в открытом состоянии при f=50 Гц, b=180o, Tk=70oC
Iп.к.=80 А;
максимальное действующее значение тока
IBмакс = 125 A;
обратный ток и ток утечки при повторяющемся напряжении и температуре структуры 125 ˚С
I обр. < 50 мА;
критическая скорость нарастания прямого тока
(di/dt)кр. = 100 А/мкс;
критическая скорость нарастания прямого напряжения
(dU/dt)кр = 100 В/мкс.
ударный ток при длительности 10 мс и температуре структуры 100 ˚С
Iуд. = 1350 А.
динамическое сопротивление
rдин. = 3,7*10 – 3 Ом.
отпирающий импульсный ток управления при Uзс=12 В
<150 мА.
тепловое сопротивление переход – корпус < 0,24 оС/Вт.
температура перехода: Тп= -40оС – +100оС.
Данный тиристор относится к разряду оптронных (оптотиристор). Кремниевый диффузионный типа p-n-p-n. Два полупроводниковых элемента: кремниевый фототиристор и арсенид галлиевый излучающий диод объединены в одну конструкцию. Предназначен для применения в помехоустойчивых системах автоматики и в цепях постоянного и переменного тока преобразователей электроэнергии. Выпускаются в металлостеклянном корпусе штыревой конструкции с жёсткими силовыми выводами. Анодом является основание. Масса мене 49 грамм.
Указания по монтажу: Чистота обработки контактной поверхности охладителя не хуже 2.5. Время пайки выводов управления паяльником мощностью 50-60 Вт при температуре припоя 220оС не должно превышать 5 с. Закручивающий момент не более 10 Н*м.
Для данного тиристора выбираем охладитель типа О241-80. Крутящий момент не более 10 Н*м.
Аппроксимируем ВАХ данного тиристора линейной функцией, используя справочные данные.
, гдеΔU0 = 1,1 B – прямое падение напряжения при токе Iп.к.;
Тогда аппроксимирующее выражение примет вид:
ΔU = 1,1 + 3,7*10 – 3 · i B
Для расчета потерь мощности в вентилях необходимо знать действующий и средний токи через вентили. Мы их нашли ранее:
IB= = 33,3 А, IB = 55 А.
Определяем потери мощности на одном вентиле.
DPВ1=DU*IВ=+ rдин.*I2В=1,1*33,3+3,7*10-3*552=47,823 Вт.
Тогда потери мощности на вентилях всех групп равны
ΔРВ = 2m*ΔPB1 = 2*3*47,823 =286,935 Вт.