Смекни!
smekni.com

Разработка и исследование модели отражателя-модулятора (WinWord zip-1Mb) (стр. 7 из 9)

- Параметры вибратора. В этой группе вводятся активные и реактивные составляющие сопротивления вибратора на трёх кратных частотах (всего должно быть введено шесть), а также значение частоты зондирования (частота, на которой вибратор является полуволновым).

- Параметры сигналов (зондирующего и модулирующего), напряжение смещения. Вводится либо выражение для сигнала (модулирующего и зондирующего), либо параметры гармонического колебания (амплитуда, частота фаза), кроме того, вводится число отсчётов на периоде высокочастотного сигнала, и число периодов модулирующего напряжения для расчёта (общее число точек расчёта равно произведению последнего параметра на отношение частот высокочастотного и модулирующего колебаний);

- Параметры модулирующей части. В этой группе вводятся параметры диода, варикапа, а также согласующих элементов. Кроме того, в этой же группе выбирается метод расчёта.

Для диода вводятся тепловой ток, коэффициент, обратно пропорциональный контактной разности потенциалов, и сопротивление базы (используется для варикапа в первой его реализации).

Для варикапа задаётся контактная разность потенциалов, ёмкость при напряжении смещения на варикапе, заданной в предыдущей группе, и коэффициент степени.

Здесь же задаются параметры согласующих элементов, которые по умолчанию, удовлетворяют условию согласования вибратора на первой гармонике;

В этих группах задаются все необходимые для работы программы параметры.

Окно с закладками для всех этих параметров открывается сразу же после запуска программы.

5.2.Схема эксперимента

После нажатия клавиши «ОК» на окне параметров отражателя-модулятора, выводится окна с номиналами элементов для эквивалентной цепи. Далее, выводятся два графика в одном окне, которые показывают зависимости активной и реактивной составляющей сопротивления от частоты.

По этим графикам можно судить, насколько точно подобраны параметры модели, если параметры не устраивают, то нужно нажать на кнопку «Fn» и заново вести нужный параметр.

После того, как убеждаемся в правильности модели вибратора, переходим к расчёту коэффициентов модуляции. Для этого необходимо нажать на кнопку с восклицательным знаком. По окончании расчёта на экране выводится окно с параметрами полученной модуляции на всех трёх гармониках. Помимо этого, выводятся ещё два окна. На первом выводятся первые пять периодов высокочастотного колебания и полученная кривая для тока в вибраторе. На втором выводится модулирующее напряжение и соответствующие значения тока с тем же периодом. По этим графикам мы можем судить об общей картине тока в вибраторе.

Для сравнения полученных результатов с другими, рассчитанными для других элементов или параметров, нужно открыть новый документ и повторить все выше перечисленные действия.

5.3.Блок-схема программы

Разработанная в ходе дипломной работы программа по своей блок – схеме практически не отличается от подобных программ моделирования. Поэтому в пояснительной записке отводится мало место под эту тему. Ниже приведём краткий список основных шагов блок – схемы программы. Основой работы являлась разработка общей модели симметричного вибратора, а перевод уже этой модели на язык программирования С++ формализован и реализован уже не в первой дипломной работе.

Итак, блок – схема программы имеет следующие основные шаги:

1. Ввод данных для симметричного вибратора, для сигналов и для моделей нелинейных элементов;

2. Расчёт параметров непрерывной модели симметричного вибратора;

3. Вывод графиков активной и реактивной составляющих полного сопротивления вибратора;

4. Синтез одной из реализаций симметричного вибратора по рассчитанным коэффициентам модели;

5. Вывод номиналов синтезированной цепи;

6. Расчёт коэффициентов дискретной модели вибратора и согласующих элементов;

7. Основной цикл программы;

8. Вывод параметров модуляции;

9. Вывод результирующих графиков.

Нужно отметить, что в конце программы можно вернуться к заданию новых параметров модели. Кроме того, можно создать новые документы, в которых будет проведён расчёт для других параметров модели.

5.4.Результаты работы программы

В ПРИЛОЖЕНИИ 4 приведены графики для различных параметров модели отражателя – модулятора. По эти графикам видно, что для рассчитанного в главе 4 случая расход результатов составляет около 20-30%, что, вообще говоря, является хорошим результатом, поскольку вывод выражений в главе 4 ввёлся с допущениями на вольтамперную характеристику диода, которая справедлива в небольшом диапазоне напряжений. Кроме того, при увеличении шагов расчёта на одном периоде высокочастотного сигнала до 100, разница между результатами сокращается до 15%.

Следовательно, результаты, полученные в ходе теоретических и практических изысканий, соответствуют действительности с большой степенью вероятности, поскольку были получены разными путями.

Разработанная программа может служить и в дальнейшем для дополнительного моделирования отражателя – модулятора и подбора оптимальных параметров для его работы.


6. РАСЧЁТ МОЩНОСТИ СИГНАЛА НА ВЫХОДЕ ПРИЁМНОЙ АНТЕННЫ

В настоящем разделе приведен вывод выражения для мощности сигнала на выходе приёмной антенны при зондировании отражателя – модулятора передатчиком. Расстояние между антенной передатчика и модулятора полагается равным R1, между модулятором и антенной приёмника – R2. В качестве сигнала рассматривается колебание, создаваемое в точке приёма за счёт переизлучения части энергии, наводимой в полуволновом вибраторе первичным полем. Кроме указанной составляющей в точке приёма существует ещё колебание, создаваемое непосредственным прохождением излучённой волны в точку приёма.

Однако в отличие от первой, эта составляющая не может быть модулирована сигналом, поступающим на отражатель – модулятор. Поскольку помехоустойчивость обработки по отношению к аддитивным помехам определяется суммарной мощностью боковых колебаний РБОК=m2×РС (где m - полный индекс амплитудно-фазовой модуляции, РС – мощность несущего колебания), то, найдя индекс модуляции m и мощность сигнала РС, поступающего от диполя при отсутствии модуляции, параметр РБОК определяется полностью, и мощность сигнала прямого прохождения сигнала не имеет значения.

Как показано выше (4.4), амплитуда ЭДС, наведённой полем зондирующего сигнала, равна:

(4.4)

Амплитуда тока первой гармоники, вызванной действием ЭДС Е0, определяется равенством:

, (6.1)

где ZД1 – сопротивление диода по первой гармонике тока вибратора;

RS1 - сопротивление излучения вибратора на первой гармонике.

Мощность сигнала переизлучаемая вибратором на k – ой гармонике определяется выражением:

, (6.2)

Подставляя в (6.2) выражение (4.4) для амплитуды ЭДС Е0 , можно получить:

, (6.3)

где

PИЗк – мощность, излучённая отражателем модулятором на k - ой гармонике;

PT,GT(q) – мощность передатчика и коэффициент направленного действия его антенны;

W=120p - волновое сопротивление свободного пространства;

- отношение потоков мощности поступающего на экран сигнала и сигнала, прошедшего через экран – коэффициент экранировки.

Мощность сигнала на выходе приёмной антенны при условии идеального её согласования с приёмником на k – ой гармоники равна:

, (6.4)

где GПР(q) – коэффициент направленного действия антенны для k – гармоники;

k – номер гармоники.

Подставляя в (6.4) соотношение (6.3), можно получить окончательное выражение для мощности сигнала на входе приёмника:

, (6.5)

Полученное соотношение позволяет оценить мощность сигнала на входе приёмника в зависимости от расстояния меду антенной передатчика и отражателем- модулятором, от расстояния между отражателем – модулятором и антенной приёмника, с учётом диаграмм направленности передающей и приёмной антенны, для различных гармоник зондирующего сигнала. С использованием соотношений раздела 4 можно получить мощность для полезного сигнала на входе приёмника.

ЗАКЛЮЧЕНИЕ