Смекни!
smekni.com

Радиоуправление летательными аппаратами (стр. 4 из 6)

Результирующая "аэродинамическая сила R, создавае­мая набегающим на корпус летательного аппарата воздуш­ным потоком, может быть разложена на


составляющие Y и Q. При этом величина нормальной составляющей Y, на­зываемой подъемной силой, пропорциональна углу αa (при малых углах αa ).


Подъемная сила Y создает поперечное ускорение Wп , пропорциональное этой силе. Следовательно, отклонение руля глубины РГ на некоторый угол δ создает


в установившемся режиме поперечное ускорение Wп, модуль которого пропорционален углу отклонения руля. Если руль глубины повернется на такой же угол δ , но в противоположном направлении (т. е. против ча­совой стрелки), то корпус аппарата повернется также в противополож­ном направлении (по

часовой стрелке), и подъемная сила Y, а следо­вательно, и ускорение Wп изменят свое направление на противополож­ное. При этом, если ось ур, жест­ко связанная

с крылом аппара­та, горизонтальна, то ускорение Wn всегда будет расположено в верти­кальной плоскости.

Если требуется создать ускорение Wn в другой плоскости, то корпус аппарата поворачивается вокруг своей продольной оси zp на некоторый угол, называемый уг­лом крена и создаваемый рулем крена РК. (При повороте руля крена набегающий на лопасти PK этого руля воздушный поток соз­дает вращающий момент, повора­чивающий корпус вокруг оси zР.)

Например, если с помощью рулей крена установится угол крена, равный 90°, то


отклонение руля глубины будет создавать ускорение Wп уже не в вертикальной, а в го­ризонтальной плоскости. Таким образом с помощью ру­лей глубины и крена может быть получено требуемое значение величины и направления


поперечного ускорения Wп аппарата.

На рис. 1.7 приведена схема симметричного декартового рулевого управления. При этом составляющие поперечного ускорения в вертикальной и


горизонтальной плоскостях, Wx и Wy , создаются соответственно с помощью руля высоты РВ и руля поворота РП. Принцип действия каж­дого из этих рулей аналогичен описанному выше прин­ципу действия руля глубины. При отклонении руля высо­ты корпус аппарата поворачивается вокруг оси yр и создается подъемная сила, а следовательно, и поперечное ускорение в вертикальной плоскости. Отклонение руля поворота РП вызывает поворот корпуса аппарата вокруг оси xР и создание подъемной силы и поперечного ускоре­ния в горизонтальной плоскости.

При декартовом управлении руль крена выполняет лишь вспомогательную функцию—стабилизацию крена аппарата. При появлении какого-либо возмущающего момента, вызывающего крен аппарата (т. е. поворот его корпуса вокруг оси zР), руль крена создает противопо­ложный момент, возвращающий корпус в исходное по­ложение. Конструктивно руль крена может быть при этом совмещен с рулем высоты или рулем поворота.

При смешанном рулевом управлении, применяемом, например, в самолетах, в создании поперечного ускоре­ния участвуют не два рулевых органа, а три — рули вы­соты, поворота и крена.

При отсутствии атмосферы или малой ее плотности (а также при малой скорости полета) управление поле­том осуществляется изменением силы тяги двигателя (двигателей). Применяемые при этом схемы рулевого управления весьма разнообразны . Рассмотрим кратко наиболее типичную из них. В такой схеме модуль W тре­буемого ускорения создается одним двигателем, жестко связанным летательного аппарата и назы­ваемым главным или маршевым

двигателем. Придание вектору W требуемого направления осуществляется пу­тем соответствующей ориентации корпуса аппарата. При управлении баллистическими ракетами дальнего действия и ракетами-носителями космических аппаратов маршевый двигатель обычно работает в течение несколь­ких минут непрерывно, а затем выключается и сбрасы­вается. При этом в течение работы двигателя управле­ние ориентацией может осуществляться с помощью га­зовых рулей. Эти рули изготавливаются из жаропрочных материалов и устанавливаются в струе газов, вытекаю­щих из сопла маршевого двигателя (рис. 1.8).

При повороте руля на некоторый угол δ , газовая струя создает


газодинамическую силу Yp, поворачивающую корпус ракеты вокруг ее центра масс.

При управлении космиче­скими аппаратами с целью экономии топлива управление полетом осуществляется обычно путем всего нескольких сравнительно кратковре­менных включений маршевого двигателя. При этом для упрощения двигателя величина его силы тяги обычно не имеет плавной регулировки, т. е. двигатель может рабо­тать только в режиме «включено—выключено». В этом случае управление полетом осуществляется не путем


регулирования величины ускорения W, а путем (включе­ния и выключения двигателя в соответствующие момен­ты времени, например, в следующей последовательности. На основании данных информационно-измерительного устройства ИИУ (см. рис. 1.1) управляющее устройство УУ


определяет требуемое изменение ∆Vтр вектора скорости аппарата. Затем корпус аппарата поворачивается вокруг центра масс таким образом, чтобы

после включения маршевого двигателя сила его тяги Т совпадала по

направле­нию с вектором ∆Vтр. Затем включается маршевый двига­тель, создающий постоянное ускорение W, и происходит изменение вектора скорости аппарата по закону ∆V=W t .

Когда это изменение достигает требуемой величины ∆Vтр , маршевый двигатель выключается. Поскольку раз­вороты корпуса происходят при выключенном маршевом двигателе, они осуществляются с помощью дополнитель­ных малогабаритных двигателей, называемых двигате­лями ориентации. В качестве таких двигателей приме­няются малогабаритные реактивные двигатели, вектор тяги которых не проходит через центр масс аппарата, или маховики (вращающиеся массы).

Основные виды управления полетом

Различают следующие основные виды управления полетом:

1)автономное управление

2) самонаведение

3)телеуправление

Деление систем управления на автономные и неавто­номные возможно по двум признакам — аппаратурному и информационному. При делении по аппаратурному при­знаку автономными считаются такие системы, в которых вся аппаратура, предназначенная для управления поле­том летательного аппарата, расположена на борту этого аппарата. При делении по информационному признаку к автономным относятся такие системы, в которых после пуска (старта) летательного аппарата никакая дополни­тельная информация о положений или параметрах дви­жения цели (пункта назначения) и КП не учитывается при образовании команд управления.

Автономное управление вследствие его информацион­ной автономности непригодно для наведения на цели, расположение или параметры движения которых изве­стны до пуска аппарата недостаточно точно или могут после пуска существенно измениться. Например, авто­номное управление не может обеспечить наведение сна­ряда на самолет противника, но пригодно для наведения баллистической ракеты на наземную цель, геоцентриче­ские координаты которой до пуска снаряда известны

Автономное управление может быть программным или самонастраивающимся. При программном управле­нии летательный аппарат должен двигаться по программной (номинальной) траектории, т. е. траектории, выбранной до пуска аппарата и зафиксированной соот­ветствующим программным механизмом, установленным на его борту. При этом задача управления сводится к измерению отклонений аппарата от номинальной тра­ектории и ликвидации этих отклонений. Однако про­граммное управление в общем случае не является опти­мальным. Типичная функциональная схема системы автономного программного управления изображена на рис. 1.10.