Помехоустойчивость систем с СКК в канале с независимыми релеевскими замираниями
Исследуем помехоустойчивость систем когерентного приема в канале с независимыми релеевскими замираниями различных способов передачи информации, среди которых рассматриваются методы многократной фазовой манипуляции с использованием кода Грея, двоичные коды с фазовой манипуляцией, блочные сигнально-кодовые конструкции.
В качестве параметра частотно-энергетической эффективности возьмем зависимость отношения "сигнал/шум" - h20 =f(g), необходимого для получения заданной вероятности ошибки p, где g=Ts/To=k/n - частотная эффективность, Ts - длительность тактового интервала СКК, To - длительность тактового интервала в информационной последовательности, k-число информационных символов, n - число символов кода, h20 =s2T0/n2ш -отношение "сигнал/шум" в полосе некодированной передачи, s2 -дисперсия сигнала, n2ш -спектральная плотнсть шума.
Рассмотрим СКК, построенные на основе хэммингового расстояния 2-го порядка, которое обозначим через М(n1,k). Здесь k - число информационных символов, n -число элементов в СКК 2-го типа, n1 =2n -число элементов в исходном двоичном коде. Перечень СКК, рассмотренных в данной статье, приведен в табл. 1.
Таблица 1
Наименование исходного кода | Условное обозначение кода | Длина СКК, 1n |
Расширенный код Хэмминга (8,4) | М(8,4) | 4 |
Код Нордстрома-Робинсона (16,8) | М(16,8) | 8 |
Код Голея (24,12) | М(24,12) | 12 |
Код Рида-Малера(32,16) | М(32,16) | 16 |
Для исследования помехоустойчивости четырехфазных сигнально-кодовых конструкций из табл. 1 методом перебора на ПЭВМ были получены спектры эквивалентных кодовых слов и спектры условных вероятностей ошибки приема одного символа df. Эти СКК обладают одинаковой частотной эффективностью g=1 такой же, как и у некодированной однократной фазовой манипуляции (ФМ2).
Зависимости вероятности ошибки от отношения "сигнал/шум",требуемого для достижения вероятности ошибки p=104, для этих СКК приведены на рис. 1 (номер кривой соответствует порядковому номеру СКК из табл. 1).
На этом же рисунке для сравнения нанесены зависимости для ФМ4 с двумя повторениями символов (m=2) и ФМ4 с m=4, которые обладают той же избыточностью. Из рис 1. следует, что без расширения полосы частот можно получить существенный выигрыш в энергетике за счет использования СКК по сравнению с некодированной ФМ2, или по сравнению с системами с фазовой модуляцией большей кратности. Наилучшей помехоустойчивостью из рассмотренных обладает СКК М(24,12) на основе кода Голея, для которой вероятность ошибки p=104 обеспечивается при отношении "сигнал/шум" h=10,5 дБ. В этом случае выигрыш в помехоустойчивости по сравнению с ФМ4 составит около 10 дБ.
Оценивая полученные данные, можно сделать следующие выводы:
1. традиционные методы передачи информации по каналу с замираниями, в которых используется только разнесенный прием (простое повторение сигналов), не являются частотно-энергетически эффективными методами;
2. высокой эффективностью обладают четырехфазные сигнально-кодовые конструкции, среди которых следует выделить четырехэлементную СКК на основе кода Хэмминга (кривая 1), восьмиэлементную СКК на основе кода Нордстрома-Робинсона (кривая 2) и 12-элементную СКК на основе кода Голея (кривая 3).
Пространственно-частотные сигнально-кодовые конструкции
При построении систем тропосферной связи приходиться учитывать тот факт, что декорреляция символов методом временного перемежения не всегда приемлема. Это связано с тем, что для передачи речевого сообщения существует ограничение на допустимую задержку сообщения, а при перемежении такая задержка принципиально присутствует и существенно зависит от длины кодового слова и числа интервалов в многоинтервальной тропосферной радиолинии.
Учитывая это обстоятельство и тот факт, что основными видами информации в тропосферных системах связи как аналоговых, так и цифровых, являются многоканальные сообщения, включающие в себя и телефонные каналы , при построении тропосферных средств связи нашли применение в основном методы декорреляции сигналов по пространственно-частотным разнесенным трактам передачи.
В реальных системах связи, например, тропосферных, число каналов разнесения обычно ограничено (2,4,8,16). Наряду с простым повторением одного и того же сигнала по параллельным каналам, как это делается при разнесенном приеме, можно преобразовать входную информацию в комбинации сигналов, используя идеи совмещения модуляции и кодирования без расширения суммарной полосы частот и с выигрышем по помехоустойчивости. В случае указанных выше систем этот метод приводит к пространстенно-частотным сигнально-кодовым конструкциям (ПЧСКК).
Был проведен анализ помехоустойчивости различных вариантов сигналообразования в системе связи с ПЧСКК. Отличительной особенностью ПЧСКК по сравнению с рассмотренными СКК, является необходимость обязательного учета повторений элементов СКК, дублированных в ветвях разнесения, а также рассмотрение вариантов, где символы СКК коррелированы.
В табл. 2 приведены параметры помехоустойчивости СКК из табл. 1, т.е. отношение "сигнал/шум", требуемое для достижения вероятности ошибки p=10-4 при различном числе разнесений m.
Таблица 2
Число разнесений, м | Отношение "сигнал-шум" для СКК, дБ | ||||
М(8,4) | М(16,8) | М(24,12) | М(32,16) | ФМ4,1м | |
1 | 39,6/15,0 | 45,2/12,1 | 52/10,1 | 52/11,6 | 35,6 |
2 | 20,6/10,3 | 22,7/8,4 | 25,3/7,3 | 25,3/7,6 | 19,3 |
3 | 15,1/8,9 | 15,9/7,3 | 17,3/6,4 | 17,3/6,4 | 15,1 |
4 | 12,6/8,25 | 12,8/6,8 | 13,7/6,0 | 13,7/6,0 | 13,1 |
5 | 11,2/7,9 | 11,1/6,55 | 11,6/5,75 | 11,6/5,75 | 12,1 |
8 | 9,2/7,3 | 8,2/- | 8,8/- | 8,8/- | 10,6 |
16 | 7,7/6,9 | 7,0/- | 6,7/- | 6,7/- | 9,5 |
бесконечн. | 6,4/6,4 | 5,5/5,5 | 4,8/4,8 | 4,8/4,8 | 8,4 |
Примечание. В числителе - при коррелированных замираниях в элементах СКК; в знаменателе - при некоррелированных замираниях
Рассмотрим два варианта сигналообразования.
В первом варианте замирания в элементах кодового слова полностью коррелированы, а сигналы разнесения некоррелированы. Блок-схема такой системы связи приведена на рисунке 2.4.2.
Во втором варианте сигналообразования замирания в элементах кодового слова некоррелированы и сигналы разнесения некоррелированы. Блок-схема такой системы связи приведена на рисунке 2.4.3.
Для сравительного рассмотрения взяты: двухантенная система связи (Q=2 антенн на передающей стороне, q=2 антенн на приемной стороне) и четырехантенная система связи (Q=4 антенн на передающей стороне, q=4 антенн на приемной стороне).
Сравнительные характеристики вариантов приведены в табл. 3 (двухантенная система) и 4 (четырехантенная система).
Таблица 3
Параметры | Значения параметров для | ||
ФМ4ч | ФМ4 | СКК-М(8,4) | |
k | 2 | 2 | 4/4/4 |
n | 1 | 1 | 4/4/4 |
m | 4 | 16 | 4/2/4 |
y | 1 | 0,25 | 0,5/1/0,25 |
h 20 | 7,1 | 3,5 | 6,6/4,3/2,25 |
Примечание. Значения для М(8,4) приведены соответственно для ПЧСКК1 (корр.)/ПЧСКК2 (некорр.)/ПЧСКК3 (некорр.)
Таблица 4
Параметры | Значения параметров для | |||
ФМ4 16 | М(8,4) | М(16,8) | М(24,12) | |
k | 2 | 4/4 | 8/8 | 12/12 |
n | 1 | 4/4 | 8/8 | 12/12 |
m | 16 | 16/16 | 16/8 | 16/4 |
y | 0.5 | 0.25/0.25 | 0.25/0.5 | 0.25/1 |
h 20 | -2.5 | -4.3/-5.1 | -5/-5.5 | -5.3/-6.0 |
Примечание. М(8,4): в числителе - ПЧСКК4 (корр.),в знаменателе для ПЧСКК5 (некорр.); М(16,8) - ПЧСКК6 (корр.)/ПЧСКК7 (некорр.); М(24,12)-ПЧСКК8 (корр.)/ПЧСКК9 (некорр.)
В табл. 3 собраны данные для следующих вариантов построения двухантенной системы:
ФМ44 - четырехфазная манипуляция (одна антенна излучает символ информации на частоте f1, а вторая антенна дублирует его на частоте f2). При этом обеспечивается четырехкратный разнесенный прием;
ФМ416 - четырехфазная манипуляция (одна антенна повторяет один символ информации на четырех не перекрывающихся по времени частотах, а вторая антенна повторяет его на тех же частотах следующих друг за другом так, чтобы можно было различать повторяющиеся элементы на приемной стороне. При этом обеспечивается шестнадцатикратный разнесенный прием;
М(8,4) кор.(ПЧСКК1) - сигнально-кодовая конструкция на основе расширенного кода Хэмминга, образованная в системе по рисунку 2.4.2.
М(8,4) некор. (ПЧСКК2) - сигнально-кодовая конструкция на основе расширенного кода Хэмминга, образованная в системе по рисунку 2.4.3. Здесь первые два элемента СКК на передаче излучаются первой антенной на отдельных частотах без их временного перекрытия, а другие два элемента СКК - другой антенной на тех же частотах, следующих в другой последовательности для того, чтобы уметь различать все элементы на приеме;