Смекни!
smekni.com

Радиорелейная и радиотропосферная связь (стр. 4 из 7)

Наряду с увеличением длины участков линии развитие систем связи, использующих ДТР, идет по пути расширения полосы пе­редаваемых сигналов. Это достигается, в частности, использованием узконаправленных антенн; хотя увеличения энергетических параметров аппаратуры почти не происходит, так как возрастают по­тери усиления антенн, узкий пучок электромагнитной энергии обе­спечивает малые запаздывания между отдельными компонентами многолучевого сигнала в месте приема и, вследствие этого, малые искажения. Расширение полосы передачи позволило передать по линиям ДТР телевизионные сигналы совместно со звуковым сопровождением. Имеются сообщения о применении на линиях ДТР импульсно-кодовой модуляции. Для расширения полосы частот и уменьшения искажений при использовании дальнего тропосферного распространения УКВ находят применение новейшие методы борь­бы с многолучевостью путем использования сигналов с широкой базой.

2. Тропосферная связь. Основные понятия

Тропосферная радиоволна распространяется между точками земной поверхности по траектории, лежащей в тропосфере. Энергия тропосферной радиоволны короче 100 см рассеивается на неоднородностях тропосферы. При этом часть энергии попадает на приемную антенну РРС, расположенной за пределами прямой видимости на расстоянии 250 ...350 км. Цепочка таких РРС образует тропосферную радиорелейную линию (ТРЛ) (рис. 2.1).На любой РРС устанавливают антенны, приемно-передающую аппаратуру и вспомогательные устройства (аппаратуру телеобслуживания, служебной связи, гарантированного электропитания и др.). Комплекс аппаратуры, обеспечивающий нормальную работу РРЛ (или ТРЛ), называют радиорелейной системой.

Рисунок 2.1 – К пояснению принципа работы ТРЛ

Механизм проведения дальнего распространения радиоволн на УКВ может быть обусловлен многими факторами. Наиболее часто возможно дальнее прохождение с рассеянием радиоволн на неоднородностях тропосферы. Регулярная дальняя связь с использованием рассеяния волн на неоднородностях тропосферы требует высокого энергетического потенциала радиостанций. В любительских условиях при ограниченных размерах антенн и мощности передатчиков регулярная дальняя связь возможна при усилении антенны 10-16 dBd и мощности передатчика 10 Вт на расстояниях до 300-500 км. Сила сигналов невелика и они имеют характерные временные замирания (фединги) Наиболее удачное время для таких тропосферных связей - время после захода солнца. При повышении энергетического потенциала станций (усиление антенн 16-20 dBd pwr 1 KW) радиус подобных связей возрастает до 600-800 км.

В летний период на 2 метровом диапазоне учащается возникновение положительной рефракции. Наиболее часто оно наблюдается в утренние часы, возникая в ясную погоду, после прохладной ночи, при высоком атмосферном давлении, через 20-30 мин после восхода солнца и продолжаясь, порой, до нескольких часов. Сила сигналов существенно выше (на 10-20 dB), чем при тропосферном рассеянии.

Летом, а особенно осенью, возникает канальное тропосферное прохождение. Характерным признаками являются высокое атмосферное давление, начинающее понижаться, наличие атмосферных фронтов. Данное прохождение позволяет проводить связи на расстояния до 1000-2000 км при умеренной мощности , порядка 100 Вт, и антенне с усилением 10-15 dBd.

2.1. Некоторые виды используемых станций и их параметры

Станция Р-423-1

СОСТАВ РАДИОСТАНЦИИ Р-423-1

- транспортное средство 13Д для установки; - транспортное средство связи и технического обслуживания электростанции; - мультиплексная система "Импульс", которая не является частью станции, используется для работы в составе цифрового оборудования.

БАЗОВОЕ ШАССИ:

- для 13Д и электростанции - автомобиль "КаМАЗ-4310"; - для средств связи и технического обслуживания - автомобиль "УРАЛ 375Д";

2.2. Сверхдальние тропосферные линии передачи

Исследования распространения волн дециметрового диапазона показали возможность увеличения расстояния между ретрансля­ционными станциями тропосферных линий до 800—1000 км. При этом объем рассеяния находится в стратосфере. Механизм распро­странения радиоволн на такие расстояния еще недостаточно изу­чен, однако эксперименты показали, что распределение амплитуды сигнала при быстрых замираниях также подчиняется закону Рэлея, распределение сигнала при медленных замираниях подчиняет­ся нормально логарифмическому закону, однако дисперсия распре­деления уменьшается до 2—2,5 дБ. Это означает, что диапазон мед­ленных флуктуаций сигнала значительно меньше, чем на обычных линиях ДТР; сезонный ход множителя ослабления также значительно меньше, чем на обычных линиях ДТР. Оказалось, что трассы, проходящие над морем, значительно лучше по условиям распространения, чем трассы такой же длины над сушей (сигнал выше на 10—20 дБ). Линии СТР приближаются по расстоянию между соседними участками к линиям ионосферного рассеяния, однако вследствие значительно большей широкополосности канала километр линии сверхдальнего тропосферного распростране­ния обходится примерно в 10 раз дешевле, чем на линиях ионо­сферного рассеяния.

Расчеты для линий СТР показывают, что три надежности свя­зи, равной 99,95%, можно получить мощность шумов в канале, не выходящую за пределы норм (с применением компан­деров, дающих 8—10 дБ выигрыша в средне минутной мощности шумов в телефонном канале). Дальнейшее повышение надежности линии может быть получено использованием слежения по частоте. Линия СТР должна иметь для слежения цепь обратной связи, по которой на передаю­щий конец подается информация о состоянии тракта. В соответ­ствии с этой информацией, частота передатчика плавно изменяется, оставаясь, все время на максимуме коэффициента передачи тропосферы. Приемное устройство непрерывно подстраивается. Выиг­рыш от применения такой системы слежения равен 9—10 дБ. Од­нако применение ее затруднено необходимостью использования очень широкой полосы.

Увеличение запаздывания между компонентами многолучевого сигнала при СТР резко увеличивает мультипликативные помехи и, следовательно, кроме ухудшения энергетики приема, вызывает увеличение переходных помех при многоканальной телефонии. При передаче дискретной информации «память» канала ограничивает скорость передачи, поскольку появляются межсимвольные искаже­ния. Однако пропускная способность многолучевого канала падает незначительно (на 17%); более того, она может быть восстановле­на оптимальными методами передачи информации. Все существую­щие методы борьбы с мультипликативной помехой могут быть, -в принципе, разделены на следующие группы:

1. Метод накопления, при котором образуются несколько ко­пий принимаемого сигнала, по-разному пораженного мультипли­кативной помехой. Эти копии комбинируются.

2. Метод адаптивного приема, при котором производится не­прерывное или периодическое измерение характеристик среды рас­пространения. Данные этих измерений используются для оптими­зации выбора сигналов на передаче путем использования инфор­мационной обратной связи и оптимальной обработки сигналов на приеме.

3. Метод использования исправляющих кодов и обратной свя­зи после решений (postdecision feedback).

Применение того или иного метода определяется, с одной сто­роны, характеристиками канала связи, а с другой—передаваемой информацией и допустимыми искажениями. На многоканальных тропосферных РРЛ наибольшее распространение нашел первый.

При передаче дискретной информации вместо методов разне­сения, применяются методы, основанные на возможности разделения лучей в месте приема. Следует отметить, что представление принимаемого сигнала в виде конечной суммы лучей с амплитудами Ui, фазами fi и задержками ti полностью согласуется с физической природой распространения только на коротких волнах. В канале ДТР не представляется возможным вы­делить один сильный луч, однако, тем не менее, представление сиг­нала в виде конечной суммы лучей правомочно. Если, например, полоса передаваемого сигнала Dfc, то сигнал может быть пред­ставлен суперпозицией лучей с задержками друг относительно дру­га, равными

(по Котельникову); тогда число разделяемых лучей равно 2tК Dfс. Используя сигналы с широкой базой и корре­ляционный прием или прием на согласованный фильтр, можно разделить лучи во времени прихода. При этом запаздывание в каж­дом луче будет значительно меньше tК и, следовательно, уменьшатся искажения сигнала и мультипликативные помехи. При этом в зависимости от методов приема возможно либо выделение одного сильнейшего луча, либо использование нескольких лучей путем когерентного приема и суммирования всех лучей по напря­жению.

Разделимость лучей связана с наличием у широкобазного сиг­нала весьма быстро спадающей автокорреляционной функции. Если ширина пика автокорреляционной функции специально сконструи­рованного сигнала меньше минимального запаздывания между лу­чами и если каким-либо способом в точке приема был определен наиболее сильный луч (или группа лучей), то простой автокорре­ляционный приемник подавит все остальные лучи, как опережаю­щие, так и запаздывающие, в соответствии со значениями функции автокорреляции для времени, равного величине задержки этих лучей.