фаза опорного сигнала должна совпадать с фазой несущей.
Чаще, однако, имеет место случай, когда специально делают
Таким образом, часть энергии передатчика расходуется для работы канала синхронизации. Это, естественно, ухудшает условия выделения полезного сообщения по сравнению с идеальным случаем. Другая трудность, связанная с выделением компоненты на несущей частоте из сигнала ИМ-ФМ, возникает из-за того, что вблизи частоты
Другой способ создания когерентного опорного напряжения основан на выделении нужного колебания из сигнала после предварительного снятия модуляции. Пусть в спектре сигнала ИМ-ФМ не содержится несущая, т. е.
Технически применение последовательного умножения и деления частоты оказывается неудобным. Разработан рад практически более удобных схем, позволяющих реализовать тот же принцип. Имеются и другие достаточно простые схемы. Однако всем им присущ общий недостаток: они не исключают перехода синхронного детектора в обратный режим работы. Действительно, фаза опорного напржения, полученного в результате деления частоты, всегда будет иметь неопределенность на
И так, при рассмотрении основного тракта выделения сообщений предполагается, что фазовые ошибки в канале опорного напряжения достаточно малы.
Теперь рассмотрим один из главных параметров - полосу захвата
Если частота несущей сигнала заранее известна с большой ошибкой, то приходится в систему ФАП дополнительно вводить устройство поиска, перестраивающее гетеродин до тех пор, пока частота сигнала не окажется в полосе захвата. Однако в нашем случае мы будем считать, что несущая частота нам заранее известна с малой ошибкой. Время поиска
Посимвольная синхронизация используется при посимвольном приеме кодовых слов и обеспечивает разделение элементарных сигналов, соответствующих различным позициям кодового слова. Требования к точности посимвольной синхронизации зависят от используемого способа обработки элементарных информационных сигналов в приемнике. При обработке, близкой к оптимальной, а она в нашем случае именно такая, необходимо достаточно точное определение границ этих сигналов. Требования к точности синхронизации возрастают с уменьшением длительности элементарных сигналов.
Рисунок 3. Функциональная схема инерционной системы посимвольной синхронизации
Для выделения сигналов посимвольной синхронизации непосредственно используется последовательность принимаемых информационных символов. На Рисунок 3 показана функциональная схема инерционной системы посимвольной синхронизации. В результате дифференцирования сигнала
Анализ таких систем имеет целью определить флюктуации моментов временных меток относительно положения, соответствующих идеальной работе. В качестве показателя точности можно взять среднеквадратическую ошибку, которая для нормальной работы должна быть много меньше длительности одного символа.
Определение параметров имитационной модели
1) Источник дискретных сообщений:
- дискретные независимые сообщения с заданными вероятностями появления в источнике V(1) = 4;
- количество различных сообщений JU = 32;
- вероятность появления различных значений сообщения A(1...18) = 0.055;
2) Кодирующее устройство:
- двоичный безызбыточный код V(2) = 1;
- количество символов NS = 5;
3) Радиоканал:
- радиоканал, использующий сигнал КИМ-ФМ и приемный тракт с линейным усилением, синхронным детектором и интегратором V(7) = 1, V(9) = 1;
- девиация фазы равна
- длительность интегрирования, отнесенная к длительности символа A(171) = 0.8, т. е. время интегрирования равно длительности символа;
4) Аддитивные помехи:
- широкополосная шумовая помеха. На входе радиоканала такая помеха представляет собой “белый” шум.
- параметром модели помехи является дисперсия
5) Замирание амплитуды сигнала (фединг):
- замирания амплитуды отсутствует V(6) = 1;
6) Временное положение меток системы символьной синхронизации:
- флюктуация временного положения меток отсутствуют (символьная синхронизация идеальная) V(3) = 1;