Смекни!
smekni.com

Радиовещание и электроакустика (стр. 2 из 2)

Характеристическая чувствительность — отношение среднего звукового давления, создаваемого громкоговорителем в номиналь­ном диапазоне частот на расстоянии 1 м от рабочего центра на ра­бочей оси, к корню квадратному от подводимой мощности.

Основными опорными геометрическими параметрами громкого­ворителей являются: геометрический центр—точка, от которой ведется отсчет расстояний от громкоговорителя; рабочая ось—прямая, проходящая через центр громкоговорителя в направле­нии преимущественного использования или же перпендикулярная плоскости излучающего отверстия.

3. Волновая и статистическая теория акустических процессов помещения

Студия представляет собой замкнутый воздушный объем. Яв­ляясь колебательной системой с распределенными параметрами, он существенно влияет на временную структуру сигнала источни­ка звука, ощутимо изменяя окраску звучания. Известно, что речь звучит различно в большом пустом помещении и в жилой комнате. Звучание оркестра на открытом воздухе гораздо беднее в тембральном отношении, чем в помещении с хорошими акустическими свойствами.

Воздух, заполняющий помещение, имеет определенную упру­гость и массу, оказывает сопротивление распространяющейся в нем звуковой волне. С позиции волновой теории воздушный объ­ем закрытого помещения рассматривается как сложная многоре­зонансная колебательная система с распределенными параметра­ми. При воздействии сигнала, излучаемого источником звука, в воздушном объеме помещения возбуждаются собственные колеба­ния. Спектр собственных частот достаточно просто рассчитать лишь для помещений простых геометрических форм. Например, для помещений прямоугольной формы (с идеально жесткими от­ражающими поверхностями) длиной l, шириной b и высотой h соб­ственные частоты

,

где g, q, r целые числа, каждой тройке их соответствует одна из собственных частот помещения. Заметим, что значения g, q, r оп­ределяют число стоячих волн, возникающих в помещении в на­правлениях l, b и h.

В помещениях малого объема (

, где
—длина волны воз­буждающего колебания) спектр собственных частот имеет дискретную структуру (рис. 3.1,а, где цифрами сверху здесь показа­ны повторяющиеся частоты). Вследствие этого отдельные частот­ные составляющие спектра возбуждающего колебания усиливают­ся (подчеркиваются), что сопровождается искажением тембра звучания. Частоте 85 Гц соответствуют тройки чисел g, q и г, со­ответственно равные 4, 1, 5; 5, 0, 0; 0, 3, 0 и 0, 0, 2. Как видно из рис. 3.1,а, лишь в области нижних частот (даже для помещений такого небольшого объема) можно говорить о дискретной струк­туре спектра собственных частот. С повышением частоты этот спектр уплотняется. Важной характеристикой звукового поля ма­лых помещений является плотность спектра собственных частот— число
в наперед заданном частотном интервале
(рис. 3.1,6):

рде Foсредняя частота выделенного частотного интервала

;

сзв— скорость звука. Если выполняется условие

, то плотность спектра собственных частот помещения настолько вы­сока, что частота возбуждающего колебания практически не отли­чается от частоты собственного колебания. Поэтому усиления от­дельных компонент спектра сигнала за счет резонансов воздуш­ного объема помещения не происходит.

Рис. 3.1. Спектр собственных частот (а) и гистограмма распределения их числа (б) при l=10 м, b=6 м, h==4 м

Система с распределенными параметрами обладает конечны­ми значениями добротности. Поэтому собственное колебание (или их совокупность), являясь откликом помещения на возбуждение, не может затухнуть мгновенно. Отклик (отзвук) проявляется на любой частоте возбуждающего колебания. Более того, как это следует из волновой теории акустики помещений, процессу зату­хания отзвука свойственны флуктуации, обусловленные интерфе­ренционными явлениями. Иными словами, каждый элемент (от­резок) временной структуры сигнала возбуждает постепенно за­тухающий отзвук. Совокупность отзвуков образует своего рода звуковой фон, на котором слушатель должен воспринимать все но­вые и новые элементы быстро изменяющейся временной структу­ры сигнала. Этот фон, являясь многократным повторением каж­дого отрезка сигнала, увеличивает время его слухового восприя­тия и характеризует собственно помещение, где происходит исполнение программы. Оба фактора—структура спектра собст­венных частот и быстрота затухания отзвука помещения — по-раз­ному влияют на слуховое восприятие.

В тех случаях, когда объем помещения достаточно велик (

, а это условие обычно выполняется на практике) и можно не считаться с дискретностью спектра собственных частот, к анализу временной структуры звукового поля можно подойти с позиций геометрической акустики. Поле в каждой точке помеще­ния можно рассматривать как результат интерференции прямой звуковой волны, поступающей от исполнителя по кратчайшему пу­ти (прямой звук), и значительного числа отраженных звуковых волн (отзвуков), претерпевших разное число отражений от по­верхностей помещения. Совокупность этих отраженных звуков об­разует реверберационный процесс студии, существенно изменяю­щий окраску звучания.