Итак, гибридные устройства СВЧ могут иметь худшие параметры, чем аналогичные устройства на объемных электромагнитных системах. Тем не менее их применение оправдывается существенным улучшением технологичности, а также уменьшением габаритов и массы, особенно для маломощных устройств.
При конструировании гибридных устройств СВЧ возможны разнообразные решения, различающиеся способами установки диэлектрических подложек с пленочными и навесными элементами в металлический корпус, способами соединения элементов, выполненных на отдельных подложках, а также способами крепления полупроводниковых приборов.
В маломощных устройствах полупроводниковые приборы можно навешивать на диэлектрическую подложку так же, как и пассивные навесные элементы. При повышенных мощностях желательно обеспечить контакт полупроводникового прибора с корпусом устройства, который в этом случае выполняет роль теплоотвода и радиатора.Для эгого в подложке делают отверстие, в котором и устанавливают полупроводниковый прибор. Соединение усчройств, выполненных на отдельных подложках, может быть либо с использованием коаксиальных разъемов, либо безразъемное. В последнем случае подложки соединяемых устройств располагают вплотную друг к другу в одной плоскости и паяют пленочные проводники и металлизированные основания подложек. При безразъемном соединении могут быть применены как отдельные металлические корпуса, так и один общий для нескольких подложек корпус.
При разработке топологии устройств учитывают требования к плотности размещения микрополосковых и других плeнoчныx элементов, требования минимизации неоднородностей при изгибах и ответвлениях, а также некоторые технологические требования, например, к минимальной ширине полоски или зазора между полосками. В некоторых случаях учитывают соображения, связанные с тепловым режимом устройства. Колебательные системы однокаскадного транзисторного усилителя выполнены на основе микрополосковых линий с использованием навесных конденсаторов в системе блокировки источника питания. Выводы транзистора соединяются с соответствующими контактными поверхностями, обозначенными буквами на рисунке
В случае реализации электромагнитных систем СВЧ устройств с использованием отрезков несимметричных микрополосковых линий их геометрические размеры, необходимые для обеспечения заданных электрических характеристик, рассчитывают по формулам и графикам.
Значения пленочных индуктивных элементов, используемых в СВЧ диапазоне, лежат в пределах от единиц до нескольких десятков наногенри. Индуктивные элементы могут быть выполнены в виде отрезков пленочного проводника, а также в виде плоских спиралей.
Значение индуктивности [нГ] металлической полоски без учета влияния металлического основания подложки равно
(10)где l, o —длина и ширина полоски, мм
С учетом влияния металлического оспорения индуктивность рассчитывают по формле:
(11)гдеh — толщина подложки
Значение индуктивности в форме круглой или квадратной спирали равно
(12)гдеk — коэффициент(k = 5 для круглой иk = 6 для квадратной спирали), Dk—внешний диаметр (сторона) спирали, мм; dк — внутренний диаметр (сторона) спирали, мм; Nк — число витков. Для внешнего диаметра спирали справедлива формула
Dk-dk+(2Nk—1)sk+2w, (13)
где sk — шаг спирали, мм;w— ширина спиральной полоски, мм.
Число витков спирали
Nk = [(Dk+sk)-(dk+2w)]/2sk, (14)
Добротность пленочных индуктивных элементов определяют как
(15)где k' = 2 для круглой иk = 1,6 для квадратной спирали; f— частота ГГц.
Погрешность расчета индуктивных спиральных элементов по приведенным формулам составляет ± 10%. Для расчета геометрических размеров по заданному значению индуктивности следует пользоваться последовательными приближениями.
Принципы построения и общая структура САПР ТП механообработки.В общем объеме трудовых затрат на изготовление РЭС ТП, изготовление деталей БНК РЭС методами формообразования занимают в среднем 15 – 20%. В состав ТП формообразования входят заготовительное производство (литье, прессование, штамповка) и механообработка (точение, сверление, фрезирование). Наиболее сложными для автоматизации проектирования деталей БНК РЭС являются ТП механообработки. В связи с этим, нами рассматриваются основные принципы и структура САПР ТП механообработки 3-го поколения.
Систему автоматизированного проектирования (САПР) технологии механообработки целесообразно ориентировать на функционирование в составе ГПС. Поэтому в основу построение системы положены результаты работ по декомпозиции процесса проектирования, созданию методического, лингвистического, алгоритмического и программного обеспечения для ТП САПР, выявлению мест визуализации и фиксации проектных результатов в целях управления процессом проектирования, обеспечению возможности проверки генерируемых моделей на адекватность.
При автоматизированном проектировании ТП изготовление деталей в условиях функционирования ГПС в комплексе задач значительное место занимают размерный анализ точности основных выходных параметров ТП (операционных размеров, припусков), а также оценка точности ТП в целом. Особо важное значение приобретают создание и реализация на ЭВМ формализованных моделей размерного анализа (синтеза), позволяющих проводить прогнозирование точностных характеристик параметров ТП на стадии проектирования, где поиск рациональных решений не связан со значительными материальными затратами.
Система автоматизирует решение следующих задач: технологический анализ чертежа с определением возможности обработки данной детали в условиях функционирования ГПС конкретной конфигурации; выбор рациональных видов и способов получения заготовки; компоновку ТП по этапам, выделение множества элементов, обрабатываемых на каждом этапе, и сравнение вариантов принципиальных схем ТП по экономическим критериям; выбор оборудования для выполнения каждого этапа; выбор маршрута обработки детали внутри этапа ТП; выбор системы оборудования и закрепления заготовки и модели оборудования на каждой операции; проектирование вариантов общего маршрута ТП с объединением операций по общности обрабатываемых элементов и поверхностей вращения, принятых в качестве баз; проведение размерного анализа для элементов поверхности вращения с учетом принятых в качестве баз или с учетом принятых в качестве баз плоскостей и требований взаимного расположения; назначение и анализ определенных линейных размеров с минимизацией состава технологических размерных цепей, замыкающими звеньями которых служат конструкторские размеры и припуски; определение излишеств, допусков и отклонений операционных линейных размеров посредством технологического размерного анализа, который в ходе проектирования маршрута изготовления детали обеспечивает назначение операционных размеров и оценку возможности их реализации на настроенном оборудовании автоматически; формирование инструментальных наладок и составление расчетно-технологических карт для операции, на которых применяются станки с ЧПУ; расчет режимов обработки и норм времени по операциям ТП; расчет себестоимости изготовления детали по вариантам и выбор из них варианта, имеющего минимальную себестоимость при заданной производительности; проектирование и выпуск управляющих программ для станков с ЧПУ с использованием САПР, например типа «Техран»; расчет накладок управляющих кулачков для токарно-револьверных автоматов с использованием систем RAKTA, RASKUL; печать технологической документации (маршрутных и операционных карт).
САПР позволяет осуществить «сквозное» автоматизированное проектирование ТП и механообработки деталей класса «тела вращения». Сквозной цикл включает выполнение конструкторского чертежа, закодированного в соответствии со специализированным формализованным языком, детали и ТП ее изготовления (входная информация), размерный анализ (синтез) точностных характеристик детали, генерацию вариантов маршрутов ТП с оценкой наиболее рациональных по экономико-технологическим критериям, а также разработку структур операций с минимизацией числа режущего инструмента, формированием инструментальных накладок и вычерчиванием операционных заказов на чертежно-графическом автомате. Результатом функционирования системы является комплект технологической документации (маршрутные и операционные карты), а также управляющие программы для операций, выполняемых на станках с ЧПУ.