Смекни!
smekni.com

ПРОЕКТИРОВАНИЕ И КОНСТРУИРОВАНИЕ СВЧ ИНТЕГРАЛЬНЫХ УСТРОЙСТВ (стр. 4 из 10)

Геометрические размеры резистивных элементов СВЧ микросхем рассчитывают по формулам, применяемым для расчета низкочастотных резисторов:

гдеS, 1, b—площадь, длина и ширина резистора;Nчисло квадратов; Р0 иR удельные мощность рассеяния и сопротивление.

При вычерчивании топологии резистивного слоя к расчетной длине резистивной полоски прибавляют не менее 100... 200 мкм с каждой стороны на перекрытие с проводником.

Конденсаторы СВЧ микросхем могут быть выполнены как в виде трехслойной пленочной структуры, содержащей обкладки и диэлектрический слой, так и в виде планарной конструкции, формируемой в едином технологическом цикле с другими проводящими элементами (микрополосковая линия передачи, индуктивная катушка и др.). Планарные конденсаторы имеют малые значения емкости (не более 2 пФ), а пленочные— емкости больших номиналов. Погонная емкость планарных конденсаторов зависит от ширины зазора, толщины пленок и диэлектрической постоянной материала подложки или наполнителя. Если использовать наполнители с большим значением диэлектрической постоянной, то можно увеличить ее погонную емкость между электродами на порядок.

Пленочные конденсаторы рассчитывают исходя из требуемого номинального значения емкости с учетом удельной емкости структуры. Площадь перекрытия обкладок определяют по формулеSc = С/Со, где С — номинальное значение емкости, а Со — удельное. Затем вносят технологическую поправку на под-пыл и выводы для контактирования. Для повышения надежности конденсаторов длина линии пересечения нижней и верхней обкладок, разделенных диэлектрическим слоем, должна быть минимальной. С другой стороны, для снижения потерь за счет сопротивления обкладок рекомендуется прямоугольная форма конденсатора с выводом по широкой стороне. Конструкцию конденсатора выбирают на основе компромиссного решения с учетом его рабочих характеристик в составе микросхемы.

Индуктивные элементы также выполняют в едином технологическом цикле (в одном слое) с остальными элементами микросхемы. Существующая технология позволяет реализовать индуктивные элементы высокой добротности (Q > 100) в виде спирали с номинальными значениямиL = 1 ... 100 нГ.

Индуктивные элементы малых номинальных значений иногда выполняют в виде отрезков полосковых линий или в виде меандра. В этом случае при расчете индуктивности учитывают не только длину и ширину линии, но и ее толщину, а также влияние металлического основания (металлизации обратной стороны).

При составлении и расчете топологического чертежа микросхемы необходимо учитывать конструкцию и геометрические размеры навесных элементов, а также способ их присоединения к пленочным элементам. Кратко остановимся на особенностях СВЧ микросхем. В ГИС СВЧ диапазона применяют полупроводниковые приборы различной конструкции. Оптимальной с точки зрения возможности автоматизации процессов сборки является конструкция полупроводниковых приборов типа LID с балочными выводами и с керамическими полукорпусами (безвыводной перевернутый прибор). Навесные пассивные элементы (резисторы и конденсаторы) выполняют в виде таблеток с балочными выводами.

После монтажа навесных элементов и настройки микросбороких стыкуют в корпусе. В этом случае должны быть выполнены два наиболее важных условия:

— микросхемы должны стыковаться геометрически одна с другой по входным и выходным контактам с достаточно высокой точностью;

— переход от одной микросхемы к другой должен обеспечивать надежный электрический контакт не только по проводникам микрополосковых линий, но и по металлизации основания (обратных сторон микросхем).

Требования к точности совмещения «вход—выход» повышаются с ростом рабочей частоты. При смещении стыкуемых микрополосковых линий или возникновении между ними зазора в СВЧ тракте устройства проявляют реактивность, которые приводят к рассогласованию.

Надежный электрический контакт обеспечивают, выбирая методы и материалы крепления подложек микросхем к корпусу. В случае пайки мягким низкотемпературным припоем важна совместимость материалов подложек и корпуса по температурному коэффициенту линейного расширения (ТКЛР). При нагреве или охлаждении системы из-за жесткости конструкции могут возникнутвнутренние напряжения в подложке и, как результат ее механическое разрушение или отслоение проводящего покрытия.eсли для крепления подложек использовать токопроводящие эластичные клеи, то проблема механической надежности исключается, однако переходное сопротивление систем металлизация—корпуса и подложка — подложка увеличивается. Кроме того, сопротивление эластичных проводящих клеев характеризуется существенной температурной зависимостью.

Интересным вариантом является механическое крепление подложек к корпусу с помощью столбиков или уголковых прижимов. Достоинство механического способа заключается в простоте монтажа и демонтажа микросхем, что позволяет быстро производить ремонт аппаратуры. Испытания систем, содержащих большое число микросхем, закрепленных механически, показали их высокую надежность. К недостаткам данного варианта следует отнести незначительное увеличение площади за счет крепления на корпусе угловых или боковых прижимов и необходимость сверления отверстий при использовании столбиков.

Чтобы повысить компактность конструкции устройства, иногда применяют так называемое двухэтажное размещение. При этом микрополосковые линии соединяют центральными проводниками коротких отрезков коаксиальных трактов. Правильный выбор значения волнового сопротивления коаксиальных переходов обеспечивает согласование микросхем в широкой полосе частот.

Герметичность соединения крышки с корпусом создают пайкой или сваркой. Разъем герметизируют с помощью металлостеклянного спая, используя согласующуюся по ТКЛР пару ковар—кварцевое стекло.

Все ее параметры определяют по приближенным формулам. Так, для определения волнового сопротивления линии одной из наиболее употребительных является формула

(1)

где w, — эффективная ширина полоски. Она зависит от толщины полоски

(2)

Формула (1) дает достаточно хорошее приближение, и оно тем точнее, чем меньше отношениеw/h. Так, приwэ/h>0,4 ошибка составляет порядка 3%, а приwэ/h<=0,4 — не превышает 1%.

Фазовые характеристики поля в линии определяются относительной эффективной диэлектрической проницаемостью wэ, которая учитывает степень концентрации поля в диэлектрике подложки

(3)

3. Пассивные СВЧ устройства.

Пассивные СВЧ устройства являются узлами, выполненными из отрезков линий передач. К ним относятся регулярные линии передачи, согласующие цепи, делители и сумматоры мощности, частотно-избирательные и невзаимные устройства, переключатели, устройства управляющие амплитудой и фазой проходящих сигналов. Другими словами, это устройства, в которых нет источников СВЧ колебаний.

В ГИС СВЧ диапазона применяют несимметричные полосковые линии, щелевые линии и компланарные волноводы. Основой микрополосковой линии передачи является несимметричная полосковая линия.

В несимметричной микрополосковой линии существуют 6 составляющих полей Е и Н, т.е. кроме волны типа Т там присутствуют волны высших типов. Наличие этих волн приводит к зависимости фазовой скорости от частоты, т. е. линия обладает дисперсией. В настоящее время строгой теории несимметричной полосковой линии нет, поэтому:

Очевидно, что чем больше диэлектрическая проницаемость материала подложки eи ее толщинаh, тем ближеeэ к e. Так, например, для подложки из окиси алюминия (e = 10)eэ=6,8, высокоомного кремния (e = 12) eэ = 7(W0/h = 1). Длина волны в линии и фазовая скорость без учета дисперсии составляют:

Выражения (1)—(3) получены в предположении, что в линии распространяется только волна типа Т. С ростом частоты (увеличениемвсех размеров линии в долях длины волны) увеличивается относительное содержание волн высших типов. Линия становится системой дисперсионной. Частотные зависимости учитывают поправкой к эффективной диэлектрической проницаемостиe`э = eэ + De.

Частота, выше которой уже необходимо учитывать зависимость eэ, от частоты, определяется формулой

(4)

Как следует из формулы (4), для уменьшения дисперсионных свойств линии необходимо уменьшать h и e, т. е. уменьшать размеры линии в длинах волн.

Активные потери в несимметричной полосковой линии складываются из потерь в металле полоски и основания линии aм, потерь в диэлектрике подложки ae, и потерь на излучение aи:aå=aм + ae+ aи

Выражения для коэффициентов затуханияaм [дБ/м] иae [дБ/м] имеют следующий вид:

(5)

(6)

Здесьf частота, Гц; a — проводимость материала основания и полоски, 1/Ом•м; tgd—тангенс угла диэлектрических потерь. На частоте f == 10 ГГц, например, коэффициент затухания линии с волновым сопротивлением Z0 = 50 0м, материалом проводников— медью на диэлектрической подложке с e= 10 имеет следующий порядок: aм = 0,5; 0,95; 2 дБ/м при h=1; 0,5; 0,25 м соответственно. Как видно из приведенного примера, потери в линии увеличиваются с уменьшением толщины подложки h.