Смекни!
smekni.com

Определение характеристик оптимального обнаружения сигналов (стр. 2 из 2)

Df=Dfд+Dfсп.

Найдем Dfд – доплеровское смещение частоты

где Vн – скорость носителя,

Vц – скорость цели обнаружения,

с – скорость звука в среде.

Найдем Dfс – ширина спектра эхо-сигнала

Коэффициент 1,37 выбирается из того условия что отношение сигнал-шум является опртимальным для нашего случая.

где tи=2×Dr/c=2×0,3/1483=0,67 (мс), где ×Dr – разрешающая способность по дальности. Тогда Dfсп=2032 (Гц).

Df=2032+2104=4136 (Гц).

Уровень шума, воздействующий на вход приемного тракта

Для расчета шума воспользуемся спектрально-энергетическими характеристиками шумов, в данном случай характеристикой для моря. Частота излученного сигнала равна 39000 Гц, тогда Pпр=2×10-5 Па/Гц2.

Уровень шумового давления на входе приемной антенны

P’ш=Uш/g,

где Uш – уровень шумов на входе в приемный тракт и шум приемного тракта;

g - чувствительность антенны в режиме приема (мкВ/Па),

Uш.эл – уровень шумов электронного тракта (мкВ).

тогда P’ш=0,017 (Па).

Площадь антенны

S=a×b.

a=(50,5×с)/fопт×Qa=(50,5×1483)/39000×10=0,192 (м),

b=(50,5×с)/fопт×Qb=(50,5×1483)/39000×10=0,192 (м).

S=0,192 ×0,192 =0,037 (м2).

Где Qa,Qa - разрешающая способность по угловым координатам.

Интенсивность

I=| P’ш /r×c |=0,017/103×1483=1,127×10-8,

где r - плотность среды распространения звука (вода),

с – скорость звука в среде.

Среднеквадратичное напряжение шума

Wш=I×S=1,127×10-8×0,037=4,157×10-10.

Спектральная плотность мощности шумовой помехи

No= Wш/Df=4,157×10-10/4136=1,005×10-13(Вт/Гц).


4. РАСЧЕТ ХАРАКТЕРИСТИК ОБНАРУЖЕНИЯ

4.1. Определение порога и построение семейства характеристик обнаружения

Определим порог при двух заданных значениях вероятности ложной тревоги Pлт1=10-3, Pлт2=10-5 для трех случаев:

а) сигнал известен точно

Распределение помехи нормальное. При определении порога пользуемся таблицей интеграла вероятности

Pлт=1-Ф(qo), тогда qo=arg[Ф(1- Pлт)].

Из таблицы интеграла вероятности для:

Pлт1=10-3, qo=3,1;

Pлт2=10-5, qo=4,27.

Находим точки для построения кривой обнаружения

Pлт=1-Ф(qo-q).

Таблица 4.1

Точки построения кривой обнаружения для известного сигнала*

q Pлт1=10-3 Pлт2=10-5
1 0,01786 0,0005
2 0,1357 0,011
3 0,4602 0,102
4 0,8159 0,39
5 0,97128 0,76
6 0,998134 0,95
7 0,9999519 0,997
8 0,99999 0,9999
9 0,99999

б) Сигнал со случайной начальной фазой

Распределение помехи релеевское, но при больших отношениях «сигнал-шум» распределение сводится к нормальному

qo=Ö-2×ln(Pлт).

Тогда для Pлт1=10-3, qo=3,72;

Pлт2=10-5, qo=4,8.

Таблица 4.2

Точки построения кривой обнаружения для сигнала с неизвестной начальной фазой*

q Pлт1=10-3 Pлт2=10-5
1 0,00326 0,00007
2 0,4272 0,0025
3 0,2358 0,035
4 0,6103 0,21
5 0,8997 0,57
6 0,9887 0,88
7 0,99841 0,98
8 0,99999 0,9993
9 0,99999

в) сигнал со случайной фазой и амплитудой

qo=Ö-2×ln(Pлт).

Тогда для Pлт1=10-3, qo=3,72;

Pлт2=10-5, qo=4,8.

Расчет точек для кривой обнаружения.

Таблица 4.3

Точки построения кривой обнаружения для сигнала с неизвестной начальной фазой и амплитудой*

q Pлт1=10-3 Pлт2=10-5
1 0,01 0,0005
2 0,1 0,02
3 0,2848 0,11
4 0,4642 0,28
5 0,5995 0,42
6 0,6852 0,55
7 0,7627 0,64
8 0,8111 0,7
9 0,8467 0,76
10 0,8753 0,8
11 0,8938 0,83
12 0,9097 0,85
13 0,9224 0,87
14 0,9326 0,89
15 0,941 0,91
16 0,9479 0,92
17 0,9536 0,924
18 0,9585 0,93
19 0,9627 0,944
20 0,9662 0,95

4.2. Расчет характеристик обнаружения

а) Находим энергию сигнала при Pomin=0,92

тогда

Данные наших расчетов приведены в приложении (рис.1) и (рис.2).

Таблица 3.4

Энергия сигнала при заданной минимальной вероятности правильного обнаружения

Сигнал Pлт1=10-3 Pлт2=10-5
qn Es qn Es
полностью известный 4,5 2,261×10-13 6 3,015×10-13
со случайной начальной фазой 5,1 2,563×10-13 6,7 3,367×10-12
со случайной фазой и амплитудой 13 6,533×10-12 17 1,005×10-12

б) энергия минимального сигнала при когерентном и некогерентном приеме.

Еи=Es/n –для когерентного приема.

Еи=Es/Ön – для некогерентного приема.

n=1 и n=20 – число сигналов принимаемой последовательности .

Для n=1 различие между когерентным и некогерентным приемами отсутствуют.


Таблица 4.5

Энергия минимального порогового сигнала

Pлт1=10-3 Pлт2=10-5
сигнал вид приема n=1 n=20 n=1 n=20
точно известный когерент. 2,261×10-12 1,508×10-14 3,015×10-13 2,01×10-14
некогерент. 5,839×10-13 7,785×10-13
со случ. нач. фазой когерент. 2,563×10-13 1,709×10-14 3,367×10-12 2,245×10-14
некогерент. 6,617×10-13 8,694×10-13
со случ. нач. фазой и амп. когерент. 6,533×10-12 4,355×10-14 1,005×10-12 6,701×10-14
некогерент. 1,687×10-13 2,595×10-13

в) коэффициент распознавания

d=qоп/Ön – для когерентного приема.

d=qоп/4Ön – для когерентного приема.

Таблица 4.6

Коэффициент распознавания, d

Pлт1=10-3 Pлт2=10-5
сигнал вид приема n=1 n=20 n=1 n=20
точно известный сигнал когерент. 4,5 1,162 6 1,549
некогерент. 2,287 3,049
сигнал со случ. нач. фазой когерент. 5,1 1,317 6,7 1,73
некогерент. 2,591 3,404
сигнал со случ. нач. фазой и амп. когерент. 13 3,357 17 5,164
некогерент. 6,606 10,163

г) импульсная мощность

Wи=Es/tи, для n=1;

Wи=Eи/tи, для n=20.


Таблица 4.7

Импульсная мощность Wи, Вт

Pлт1=10-3 Pлт2=10-5
сигнал вид приема n=1 n=20 n=1 n=20
точно известный когерент. 3,354×10-10 2,236×10-11 4,472×10-10 2,981×10-11
некогерент. 8,659×10-11 1,155×10-11
со случ. нач. фазой когерент. 3,801×10-10 2,534×10-11 4,993×10-10 3,329×10-11
некогерент. 9,814×10-11 1,289×10-10
со случ. нач. фазой и амп. когерент. 9,688×10-10 6,459×10-11 1,491×10-9 9,937×10-10
некогерент. 2,502×10-10 3,849×10-10

ВЫВОД

В данной курсовой работе были рассчитаны и построены кривые семейства характеристик обнаружения и определены значения порогового сигнала для исходных данных. Расчет проводился для когерентной последовательности и некогерентной последовательности импульсов при полностью известном сигнале, со случайной начальной фазой и амплитудой. По результатам расчетов видно что при некогерентном сигнале коэффициент распознавания выше, чем при когерентном, также при этом выше и импульсная мощность. Также можно сделать вывод, что у различных сигналов, таких, например, как полностью известный сигнал и сигнал со случайной начальной фазой, будут разные энергий при заданной минимальной вероятности правильного обнаружения, в первом случае она меньше.


ПРИЛОЖЕНИЕ




* см. приложение (рис.1 и рис.2)

* см. приложение (рис.1 и рис.2)

* см. приложение (рис.1 и рис.2)