Смекни!
smekni.com

Навигационные комплексы Гланасс и Новстар (стр. 9 из 17)

Иллюстрируя возможности построения АП системы «Глонасс», кратко опишем одноканальную АП «АСН-37» для гражданских самолетов.

Аппаратура «АСН-37» предназначена для автоматической работы в беспультовом варианте (без участия оператора) с комплексом цифрового пилотажно-навигационного оборудования самолета и использует весь объем данных о движении самолета от инерциальных систем, вырабатывая, в свою очередь, оценки плановых координат, высоты и составляющих вектора скорости для комплексной обработки и коррекции инерциальных систем.

Специфическим отличием радиосигналов системы ”Глонасс” от радиосигналов системы “Навстар” является наличие литерных частот несущей радиосигнала каждого НИСЗ, что обеспечивает частотное разделение сигналов в АП. Для приема радиосигналов с литерными частотами в АП системы “Глонасс” используется синтезатор литерных частот (СЛЧ), управляемый навигационным процессором в гетеродинах радиочастотного преобразователя. Конструктивно СЛЧ находится в радиочастотном преобразователе.

В АП “АСН–37” литерные частоты синтезируются с шагом 0,125 МГц на частоте 356 МГц. Сигнал первого гетеродина формируется умножением литерных частот на 4, сигнал второго гетеродина – делением на 2. При этом первое преобразование частот принимаемого сигнала компенсирует 8/9 литерного разноса частот сигналов каждого НИСЗ, а второе преобразование – оставшуюся 1/9 литерного разноса частот. Выбор рассмотренного частотного плана радиочастотного преобразователя позволил минимизировать аппаратурные затраты для одноканальной АП, используя один синтезатор частот для двух гетеродинов. Однако применение подобного частотного плана преобразует спектр демодулированного ФМ сигнала на нулевую вторую промежуточную частоту. Для стабилизации и повышения устойчивости работы выходных каскадов радиочастотного преобразователя введена дополнительная модуляция ПСП суммированием по модулю 2 с меандром частоты 0,125 МГц, являющийся поднесущей для демодулированного сигнала.

Навигационный процессор состоит из: микропроцессора серии 1806 ВМ2; оперативного запоминающего устройства (ОЗУ) объем которого 8К байт; постоянного запоминающего устройства (ПЗУ) объемом 64К байт и преобразователя интерфейса, который измеренные данные в виде последовательного кода передает в тракт дальнейшей обработки сигнала. Производительность микроЭВМ 300 00 коротких операций в секунду.

Технические характеристики «АСН-37» следующие:

погрешности определения широты, долготы 45 м,

высоты 65 м

путевой скорости 0,25 м/с;

текущего времени 1 мкс;

масса 13 кг;

Отметим, что предыдущая модификация АП «АСН-37», именуемая «АСН-16» (также разработка РИРВ), прошла успешные испытания на самолете «Боинг-747», которые проводились по плану совместных работ с американскими фирмами «Ханнивелл» и «Нортвест эйрлайнз». На испытаниях был подтвержден одинаковый уровень точности АП «АСН-16» и аналогичной американской АП, работавшей по сигналам системы «Навстар».

Дальнейшее развитие АП типа «АСН-16» — «АСН-37» направлено на создание многоканальной интегрированной АП, работающей одновременно по сигналам систем «Глонасс» и «Навстар» и удовлетворяющей требованиям международного стандарта.

Морские суда оснащаются навигационной АП «Шкипер», работающей по сигналам системы «Глонасс». Эта аппаратура научно-исследовательского института космического приборостроения (Москва) определяет географические координаты и путевую скорость судна, расстояние, пройденное с момента включения аппаратуры или от заданной точки; расстояние между заданными точками маршрута; рекомендованный курс следования в заданную точку с сигнализацией о достижении заданной точки или об отклонении от маршрута; время прибытия в точку назначения с заданной скоростью; маршрутные координаты; коммерческие задачи.

2.2.2Многоканальная АП

Многоканальная аппаратура предназначена для высокоточных определений координат, составляющих вектора скорости и поправки шкалы времени высокодинамичных потребителей в условиях организованных помех. К разработке многоканальной АП, обладающей уникальными возможностями навигационно-временного обеспечения, постоянно приковано внимание специалистов ведущих фирм мира. Применение современной технологии, позволяющей резко повышать плотность компоновки полупроводниковых приборов и расширять возможности реализации цифровых способов обработки сигналов, приводит к постоянному совершенствованию архитектуры АП. В сочетании с модульным принципом конструирования созданы образцы четырех- и пятиканальной аппаратуры объемом 15 дм2 и массой 12 кг. Ставится задача дальнейшего их уменьшения хотя бы на порядок.

Число каналов многоканальной АП в первую очередь определяются динамическими характеристиками потребителя. Так, АП высокодинамиеских потребителей, штурмовиков и некоторых видов ракет содержит пять каналов приема радиосигналов, при этом четыре канала используются для непрерывного слежения за несущей и задержкой радиосигналов четырех НИСЗ, обеспечивая тем самым непрерывное решение навигационной задачи, а пятый канал используется для поиска, синхронизации и приема информации от новых НИСЗ, обеспечивая непрерывную смену рабочих созвездий. Следует отметить, что пятиканальная аппаратура применяется также на таком малодинамичном объекте, как подводная лодка, но это обусловлено требованием малого времени до первого определения координат.

Четырехканальная АП находит применение на ракетах разного класса. Необходимость в пятом канале здесь отпадает, так как ввиду относительно малого времени полета смена рабочих созвездий НИСЗ не производится.

Двухканальная АП применяется на объектах со средней динамикой, таких как транспортные самолеты, некоторые ракеты, отдельные классы кораблей, самолеты гражданской авиации. Один канал АП этого типа используется для последовательного во времени приема и обработки радиосигналов четырех НИСЗ рабочего созвездия, а второй канал также, как и пятый канал в пятиканальной АП, – для обновления рабочего созвездия.

Многоканальная аппаратура различных разработок, как правило, имеет следующие основные технические характеристики:

чувствительность приемника не хуже 166 дБВт;

погрешность измерения квазидальности не хуже 1,5 м ,

квазискорости не хуже 1,5 см/с при отношении с/ш, равном 30 дБГц,

и при следующей динамике движения потребителя:

максимальная скорость до 1100 м/с и выше,

ускорение до 10g,

рывок до 5g/с;

помехоустойчивость при поиске 24 дБ (кодС/А),

при слежении 40 дБ (код Р),

при удержании сигнала 47 дБ (код Р),

погрешность определения плановых координат не хуже 10 м;

время до первого определения координат не более 2,5 мин.

Как видно из изложенного для решения задачи поставленной в дипломном проекте достаточно одноканальной аппаратуры потребителей. Наиболее предпочтительным вариантом является аппаратура «АСН-37».

2.3.Выбор и обоснование структурной схемы аппаратуры сверки и коррекции ШВ

Для вычисления поправки к ШВ ЭЧ как наиболее удовлетворяющий современным тенденциям области проектирования устройств цифровой обработки информации будем использовать микропроцессорный элемент. Тем самым мы обеспечим гибкость разработанного вычислителя по отношению к изменениям в его структуре (например, изменение алгоритма вычисления), уменьшится количество применяемых элементов, снизится стоимость разработки на этапе проектирования и внедрения, повысятся характеристики по точности и быстродействию. Таким образом, очевидно, основным элементом вычислительного-корректирующего устройства является микропроцессор.

Упрощенно структура микропроцессорного ядра включает в себя микропроцессор, микросхему постоянного запоминающего устройства (ПЗУ) для хранения управляющей программы, микросхему ОЗУ для хранения оперативной информации и микросхему электрически стираемого ПЗУ, а так же микросхему интерфейса для связи с внешними устройствами.В ЭППЗУ можно хранить установки режимов работы, ряд констант, поправки к ШВ UTC, СЕВ и прочую информацию, которая не является постоянной, но не меняется на протяжении длительного промежутка времени.

Т. к. в качестве АПШВ нами принята система «АСН-37», не имеющая собственных органов управления необходимо предусмотреть пульт управления и индикаторное устройство.

Для нормального функционирования процессора в условиях некачественного питания, следует дополнить разрабатываемое устройство рядом функциональных узлов, которые позволили бы исключить такие опасные явления, как работа в неопределенном режиме, а также генерирование неопределенных состояний портов при неполноценном сбросе. Работа вычислительного узла в неопределенном режиме опасна, поскольку в данном случае процессор может выполнять действия, не предусмотренные программой. Процессор может войти в этот режим при медленных изменениях напряжения питания (например, при включении и выключении), когда сигнал сброс не функционален. Если напряжение питания упадет ниже критического значения, а затем восстановится (либо будет медленно снижаться), а сигнал сброса в этот момент не поступит, то произойдет описанный эффект. Для борьбы с этим явлением требуется специальная схема, назначение которой – подавать сброс на процессор в те моменты, когда напряжение питания находится ниже допустимого уровня.