Смекни!
smekni.com

Методы и алгоритмы компоновки, размещения и трассировки печатных плат (стр. 3 из 4)

Наибольшее распространение в алгоритмах размещения получил первый критерий, что объясняется следующими причинами: уменьшение длин соединений улучшает электрические характеристики устройства, упрощает трассировку печатных плат; кроме того, он сравнительно прост в реализации.

В зависимости от конструкции коммутационной платы и способов выполнения соединений расстояние между позициями установки элементов подсчитывается по одной из следующих формул:

,
,

В общем виде задача размещения конструктивных элементов на коммутационной плате формулируется следующим образом. Задано множество конструктивных элементов R={r1,r2,…,rn} и множество связей между этими элементами V={v1,v2,…,vp}, а также множество установочных мест (позиций) на коммутационной плате T={t1,t2,…,tk}. Найти такое отображение множества Rна множестве T, которое обеспечивает экстремум целевой функции

, где cij коэффициент взвешенной связности.

Силовые алгоритмы размещения

В основу этой группы алгоритмов положен динамический метод В.С. Линского. Процесс размещения элементов на плате представляется как движение к состоянию равновесия системы материальных точек (элементов), на каждую из которых действуют силы притяжения и отталкивания, интерпретирующие связи между размещаемыми элементами. Если силы притяжения, действующие между любыми двумя материальными точками riи rjпропорциональны числу электрических связей между данными конструктивными элементами, то состояние равновесия такой системы соответствует минимуму суммарной длины всех соединений. Введение сил отталкивания материальных точек друг от друга и от границ платы исключает возможность слияния двух любых точек и способствует их равномерному распределению по поверхности монтажного поля. Чтобы устранить возникновение в системе незатухающих колебаний, вводят силы сопротивления среды, пропорциональные скорости движения материальных точек.

Таким образом, задача оптимального размещения элементов сводится к нахождению такого местоположения точек, при котором равнодействующие всех сил обращаются в нуль.

К достоинствам данного метода относятся возможность получения глобального экстремума целевой функции, а также сведение поиска к вычислительным процедурам, для которых имеются разработанные численные методы.

Недостатками являются трудоемкость метода и сложность его реализации (подбора коэффициентов для силовых связей); необходимость фиксирования местоположения некоторого числа конструктивных элементов на плате для предотвращения большой неравномерности их размещения на отдельных участках платы.

Итерационные алгоритмы размещения

Итерационные алгоритмы имеют структуру, аналогичную итерационным алгоритмам компоновки, рассмотренным ранее. В них для улучшения исходного размещения элементов на плате вводят итерационный процесс перестановки местами пар элементов.

В случае минимизации суммарной взвешенной длины соединений формула для расчета изменения значения целевой функции при перестановке местами элементов riи rj, закрепленных в позициях tfи tg, имеет вид:

,

где pи h(p) – порядковый номер и позиция закрепления неподвижного элемента rp. Если

, то осуществляют перестановку riи rj, приводящую к уменьшению целевой функции на
, после чего производят поиск и перестановку следующей пары элементов и т.д. Процесс заканчивается получением такого варианта размещения, для которого дальнейшее улучшение за счет парных перестановок элементов невозможно.

Использование описанного направленного перебора сокращает число анализируемых вариантов размещения (по сравнению с полным перебором), но приводит к потере гарантии нахождения глобального экстремума целевой функции.20

Алгоритмы дано группы характеризуются достаточно высоким быстродействием. Алгоритмы с групповыми перестановками элементов на практике используются редко ввиду их сложности, которая часто не оправдывает достигаемую степень улучшения результата.

Последовательные алгоритмы размещения

Последовательные алгоритмы основаны на допущении, что для получения оптимального размещения необходимо в соседних позициях располагать элементы, максимально связанные друг с другом. Сущность этих алгоритмов состоит в последовательном закреплении заданного набора конструктивных элементов на коммутационной плате относительно ранее установленных. В качестве первоначально закрепленных на плате элементов обычно выбирают разъемы, которые искусственно «раздвигают» до краев платы. При этом все контакты разъемов равномерно распределяются по секциям (столбцам и строкам координатной сетки). На каждом l-ом шаге (l=1,2,…,n) для установки на коммутационную плату выбирают элемент

из числа еще не размещенных, имеющий максимальную степень связности с ранее закрепленными элементами Rl-1. В большинстве используемых в настоящее время алгоритмов оценку степени связности производят по одной из следующих формул:

;

,

где cij – коэффициент взвешенной связности элементов iи j; Jl-1 – множество индексов элементов, закрепленных на предыдущих l-1 шагах; n– общее число размещенных элементов.

Если установочные размеры всех размещаемых на плате элементов одинаковы, то выбранный на очередном шаге элемент

закрепляют в той позиции
из числа незанятых, для которой значение целевой функции
с учетом ранее размещенных элементов Rl-1 минимально. В частности, если критерием оптимальности является минимум суммарной взвешенной длины соединений, то

,

где dfj – расстояние между f-ой позицией установки элемента

и позицией размещенного ранее элемента rj; Tl-1 – множество позиций, занятых элементами после (l-1)-го шага алгоритма.

Процесс размещения алгоритма заканчивается после выполнения nшагов алгоритма.

Алгоритмы, использующие последовательный процесс закрепления элементов в позициях, являются в настоящее время самыми быстродействующими. Однако по качеству получаемого решения последовательные алгоритмы уступают итерационным. Поэтому их используют обычно для получения начального размещения элементов на плате.

4. АЛГОРИТМЫ ТРАССИРОВКИ

Трассировка соединений является, как правило, заключительным этапом конструкторского проектирования РЭА и состоит в определении линий, соединяющих эквипотенциальные контакты элементов, и компонентов, составляющих проектируемое устройство.

Задача трассировки – одна из наиболее трудоемких в общей проблеме автоматизации проектирования РЭА. Это связано с несколькими факторами, в частности с многообразием способов конструктивно-технологической реализации соединений, для каждого из которых при алгоритмическом решении задачи применяются специфические критерии оптимизации и ограничения. С математической точки зрения трассировка – наисложнейшая задача выбора из огромного числа вариантов оптимального решения.

Одновременная оптимизации всех соединений при трассировке за счет перебора всех вариантов в настоящее время невозможна. Поэтому разрабатываются в основном локально оптимальные методы трассировки, когда трасса оптимальна лишь на данном шаге при наличии ранее проведенных соединений.

Основная задача трассировки формулируется следующим образом: по заданной схеме соединений проложить необходимые проводники на плоскости (плате, кристалле и т.д.), чтобы реализовать заданные технические соединения с учетом заранее заданных ограничений. Основными являются ограничения на ширину проводников и минимальные расстояния между ними.

Исходной информацией для решения задачи трассировки соединений обычно являются список цепей, параметры конструкции элементов и коммутационного поля, а также данные по размещению элементов. Критериями трассировки могут быть процент реализованных соединений, суммарная длина проводников, число пересечений проводников, число монтажных слоев, число межслойных переходов, равномерность распределения проводников, минимальная область трассировки и т.д. Часто эти критерии являются взаимоисключающими, поэтому оценка качества трассировки ведется по доминирующему критерию при выполнении ограничений по другим критериям либо применяют аддитивную или мультипликативную форму оценочной функции, например следующего вида