Смекни!
smekni.com

Лавинно-пролетный диод (стр. 2 из 3)

Активное сопротивление такого диода может принимать отрицательные значения и при отсутствии дополнитель­ной группировки электронов в диодном промежутке. Это хорошо видно на пространственно-временной диаграмме движения электронов в диоде с полевой эмиссией, изо­браженной на рис. 4а. Сгустки электронов, вырванные из катода в моменты максимума высокочастотного поля, движутся сначала в ускоряющем, а затем в тормозящем поле, и, если угол пролета между катодом и анодом превышает p, активное сопротивление диода отрицательно и достигает максимальной величины при q » 3/2 p (рис. 1.2,а). Дополнительная группировка электронов за счет модуляции по скорости в диодном промежутке игра­ет при этом второстепенную роль. Как условия возбуж­дения, так и к. п. д. такого генератора могут быть зна­чительно лучшими, чем у диодных генераторов со скоростной модуляцией электронов.

Рис. 4а относится к случаю, когда ток эмиссии мгно­венно следует за напряженностью электрического поля. Допустим теперь, что по каким-либо причинам ток эмиссии отстает во времени от напряженности электрического поля. Причины такого запаздывания эмиссии могут быть различными.

Рис. 1.1. Пространственно-вре­менная диаграмма движения электронов в диоде с полевой эмиссией:

а) без запаздывания эмиссии;

б) с запаздыванием эмиссии.

Зависимость активного сопротивления такого диода от угла пролета электронов без учета элек­тронного пространственного заряда схематически изобра­жена на рис. 5б. В идеальном случае КПД такого генератора может достигать больших значений.

Рис. 5. Активное сопротивление диода с полевой эмиссией:

а) без запаздывания эмиссии;

б) с запаздыванием эмиссии.

В предыдущих рассуждениях мы исходили из чисто кинематической модели, пренебрегая влиянием объем­ного заряда на группировку электронов в диодном про­межутке. Между тем это влияние во многих вариантах диодных генераторов отнюдь не мало. Особенно суще­ственна роль объемного заряда в диодах с полевой эмиссией, в которых электронный объемный заряд, сни­жая напряженность электрического поля у катода, непо­средственно влияет на ток эмиссии. По существу элек­тронный объемный заряд создает в диоде своеобразный механизм внутренней отрицательной обратной связи. Если ток эмиссии мгновенно следует за полем, то дейст­вие этой отрицательной обратной связи сводится лишь к ограничению протекающего через диод среднего тока. Однако, если эмиссия инерционна, положение суще­ственно меняется.

Отставание тока эмиссии от поля эквивалентно введениию в отрицательную обратную связь запаздывания, что существенно влияет на колебательные свойства си­стемы. Обладая определенными дисперсионными свой­ствами, такая обратная связь на одних частотах облег­чает условия возбуждения автоколебаний в системе, сни­жая требования к добротности внешнего резонансного контура, а на других, напротив, ухудшает эти условия вплоть до полного подавления автоколебаний. Более то­го, при некоторых условиях эта связь может оказаться достаточной, чтобы в диоде возникли собственные автоколебания, вообще не нуждающиеся во внешнем доброт­ном резонансном контуре. В этом случае диодный про­межуток работает как автоколебательная система, созда­вая во внешней активной нагрузке импульсы тока с ча­стотой, определяемой временем запаздывания и скоро­стью «срабатывания» отрицательной обратной связи.

Колебательный процесс в таком генераторе можно схематически представить следующим образом (рис. 6).

Допустим, например, что время пролета электронов в диоде t не зависит от высокочастотного поля и вдвое превышает время запаздывания эмиссии. Пусть в момент времени t=0 к диоду приложена разность потенциалов U0, создающая у катода напряженность по­ля Е=Е(0), превышающую на DE(0) критическое значение Enp, при котором начинается эмиссия электронов.

Рис. 6. Изменение во времени поля у катода Е(0) и тока IЭ в диоде с запаздывающей эмиссией.

При t=t1=t3 возникает ток IЭ, величина которого определяется полем Е(0) и сохраняется неизменной в течение времени t3. По мере увеличения объемного заряда в диодном промежутке поле у катода снижается и, если плотность тока эмиссии достаточно высока, принимает значения, меньшие Uпр. Эмиссия из катода длится в течение времени, несколько превышающего t3, и затем прекращается. К ано­ду движется пакет электронов. В момент t2=t+2t3+Dt»3/2t первые электроны пакета достигают анода, поле у катода начинает возрастать. К моменту t2=t+2t3+Dt»3/2t весь пакет электронов выходит из пролетного пространства, поле у катода достигает начальной величины. Затем цикл повторяется. Длительность цикла, т. е. период колебаний, составляет, таким образом, около 2p/w. Добавление поля электронного пространственного заряда нарушает описанные выше фазовые соотношения между током эмиссии и электрическим полем в диодном промежутке, в результате чего на частотах, ниже некоторого значения, активное сопротивление диода становится положительным. Эта так называемая харак­теристическая частота зависит от запаздывания и кру­тизны изменения тока эмиссии с полем; она близка к ча­стоте собственных автоколебаний диода.

Изложенные соображения носят общий характер и полностью применимы не только к вакуумным, но и к диодам других типов —диэлектрическим, полупровод­никовым и т. п., с учетом, разумеется, специфики движе­ния носителей заряда в твердых телах. В частности, эти соображения имеет непосредственное отношение к меха­низму работы лавинно-пролетных диодов.

3 ПРИНЦИП РАБОТЫ ЛПД

Схематически механизм работы р-n ЛПД можно представить следующим образом. Рассмотрим для опре­деленности запорный слой обратно смещенного плавно­го p-n перехода (рис. 7). Он представляет собой уча­сток полупроводника, в котором практически отсутству­ют подвижные носители заряда, а приложенная к р-n переходу разность потенциалов компенсируется полем объемного заряда ионов примеси Nn и Np, положитель­ным в одной части запорного слоя (n-слой) и отрица­тельным — в другой (p-слой). Этот участок ограничен с обеих сторон нейтральными слоями полупроводника. Напряженность электрического поля Е максимальна в плоскости х=0, где объемный заряд ионов примеси меняет знак (плоскость технологического перехода). По мере увеличения напряжения смещения запорный слой расширяется и напряженность электрического поля воз­растает. Когда поле в плоскости технологического пере­хода достигает некоторого критического значения Е = Еnp, начинается интенсивный процесс ударной иониза­ции атомов кристалла подвижными носителями заряда, приводящий к лавинному умножению числа носителей и образованию новых электронно-дырочных пар.

Область, где происходит рождение носителей заряда, ограничена более или менее уз­ким слоем — так называемым слоем умножения, рас­положенным вблизи технологического перехода, где полемаксимально (рис. 7). Образованные в слое умноже­ния электроны и дырки дрейфуют под действием сильного электрического поля к границе нейтрального полу­проводника через пролетные участки запорного слоя, причем дырки движутся через р-слой, а, электроны через п-слой. Так как напряженность электрического поля в большей части р-п перехода очень велика, то скорость дрейфа носителей практически постоянна и не завялит от поля.

Рис. 7. Схема плавного р-п перехода ЛПД:

а) запирающий слой;

б) распределение ионов примеси;

в) измение электрического поля.

Таким образом, обратно смещенный р-п переход при напряжении, близком к пробивному, представляет собой диодный промежуток, в котором роль катода играет слой умножения, а роль пролетного пространства — остальная часть запорного слоя. Эмиссия такого катода носит ярко выраженный «полевой» характер — ток, вы­ходящий из слоя умножения, возрастает или убывает в зависимости от напряженности электрического поля в этом слое. Лавинная природа тока эмиссии обуслов­ливает его инерционность — для развития лавины требу­ется определенное время, так что мгновенное значение электрического поля определяет не саму величину лавин­ного тока, а лишь скорость его изменения во времени. Поэтому изменение тока не следует мгновенно за изме­нением электрического поля, а отстает от него по фазе на величину, близкую к p/2.

Такой р-п переход близок по свойствам к оптималь­ному варианту полевого диода, в котором ток эмиссии отстает от поля на четверть периода. Под действием приложенного к р-п переходу переменного напряжения из слоя умножения выходят «пакеты» носи­телей заряда, которые сразу попадают в тормозящее вы­сокочастотное поле, так что энергия взаимодействия этих носителей с полем отрицательна почти при любой ши­рине р-п перехода. Отсутствие модуля­ции скорости носителей в этом случае лишь улучшает высокочастотные свойства диода.

Поэтому основные выводы о свойствах полевого дио­да с запаздывающей эмиссией, сделанные выше, приме­нимы и к лавинно-пролетному диоду. Это касается, в частности, соображений о влиянии объемного заряда под­вижных носителей на колебательные свойства генератора на лавинно-пролетном диоде. Попадая в пролетное пространство, основные носители частично нейтрализуют пространственный заряд ионов примеси и снижают поле в слое умножения. Этот эффект облегчает условия само­возбуждения генератора на частотах выше характери­стической и препятствует возникновению паразитных колебаний на более низких частотах, где активное со­противление диода положительно.

Вместе с тем, ЛПД имеет специфические особенно­сти, связанные с лавинной природой тока, из которых принципиальной является одна: сдвиг по фазе между полем и током в слое умножения, вследствие конечной ширины последнего, как правило, превышает p/2, и слой умножения сам по себе уже обладает отрицательным сопротивлением. В большинстве практически реализуе­мых р-п структур этот эффект является второстепенным, однако для одного класса диодов он играет решающую роль, определяя основные особенности их высокочастот­ных характеристик.