Телеизмерение
Из трех основных телемеханических функций (телеуправление, теле-сигналйзация и телеизмерение) телеизмерение (ТИ) является наиболее сложным, что обусловлено требованием передачи информации с большой точностью. Разнообразие телеизмерений велико. Однако в последние годы наблюдается тенденция в сторону преимущественного применения кодо-импульсных ТИ, что выявляется при анализе современных систем телемеханики (см. гл. 15 и 16). Вследствие этого уменьшается использование систем ТИ, основанных на других принципах; так, перестали применять системы интенсивности. В то же время появились новые адаптивные телеизмерения.
Основные понятия
Телеизмерение — получение информации о значениях измеряемых параметров контролируемых или управляемых объектов методами и средствами телемеханики (ГОСТ 26.005—82). В том же ГОСТе даются определения таких понятий.
Телеизмерение по вызову—телеизмерение по команде, посылаемой с пункта управления на контролируемый пункт и вызывающей подключение на контролируемом пункте передающих устройств, а на пункте управления—соответствующих приемных устройств.
Телеизмерение по вызову позволяет использовать одну линию связи (канал телеизмерения) для поочередного наблюдения за многими объектами телеизмерения. Диспетчер с помощью отдельной системы телеуправления может подключать к каналу телеизмерения желаемый объект телеизмерения. На пункте управления показания можно наблюдать на общем выходном приборе. Если показания имеют различные шкалы, то измеряемые величины подключаются к разным приборам. При телеизмерении по вызову можно применять автоматический опрос объектов телеизмерения циклически по заданной программе.
Телеизмерение по выбору—телеизмерение путем подключения к устройствам пункта управления соответствующих приемных приборов при постоянно подключенных передающих устройствах на контролируемых пунктах.
Телеизмерение текущих значений (ТИТ) — получение информации о значении измеряемого параметра в момент опроса устройством телемеханики.
Телеизмерение интегральных значений (ТИИ)— получение информации об интегральных значениях измеряемых величин, проинтегрированных по заданному параметру, например времени, в месте передачи.
Последние два определения даются в ГОСТ 26.205—83.
Телеизмерения имеют особенности, отличающие их от обычных электрических измерений, которые не могут быть применены для измерения на расстоянии вследствие возникновения погрешностей из-за изменения сопротивления линии связи при измерении параметров окружающей среды — температуры и влажности. Даже если бы указанные погреш ности находились в допустимых пределах, передача большого числа показаний потребовала бы большого числа проводов. Кроме того, в некоторых случаях (передача измерения с подвижных объектов —самолетов, ракет и др.) обычные методы измерения принципиально не могут быть использованы. Методы телеизмерения позволяют уменьшить погрешность при.передаче измеряемых величин на большие расстояния, а также многократно использовать линию связи.
Сущность телеизмерения заключается в том, что измеряемая величина, предварительно Преобразованная в ток или напряжение, дополнительно преобразуется в сигнал, который затем передается по линий связи. Таким-образом, передается не сама измеряемая величина, а эквивалентный ей сигнал, параметры которого выбирают так, чтобы искажения при передаче были минимальными. Структурная схема .телеизмерения приведена на рис. 13.1. Измеряемая величина х (например, давление газа) преобразуется с помощью датчика (первичного преобразователя) / в электрическую величину z (ток, напряжение, сопротивление, индуктивность или емкость). Далее происходит вторичное, телемеханическое преобразование: электрическая величина в передатчике 2 преобразуется в сигнал С|, который передается в линию связи. На приемной стороне (в приемнике 3) снова производится преобразование принятого сигнала Сч (он может несколько отличаться от переданного сигнала Ci за счет воздействия помех в линии связи) в значение тока или напряжения, которое эквивалентно измеряемой величине и воспроизводит ее на выходном приборе ВП. Совокупность технических средств, необходимых для осуществления телеизмерений (рис. 13.1), включая датчик / и показывающий прибор 4, называют телеизмерительной системой (СТИ).
Характеристики систем телеизмерения и предъявляемые к ним требования. Главное требование, предъявляемое к СТИ, заключается в том, что она должна обеспечить заданную точность телеизмерения. Поэтому основной характеристикой СТИ является точность. Точность характеризуется статической погрешностью, или просто погрешностью.
Погрешность — степень приближения показаний приемного прибора к действительному значению измеряемой величины. Погрешность телеизмерения определяют как максимальную разность между показаниями выходного прибора на приемной стороне и действительным значением телеизме-ряемой величины, определяемым по показаниям образцового прибора.
Согласно ГОСТ 26.205—83, классы точности каналов телеизмерения должны быть установлены для устройств и комплексов при цифровом и аналоговом воспроизведении измеряемых параметров из следующего ряда: 0,15; 0.25; 0,4; 6,6; 1,0; 1,5; 2,5.
Абсолютная ос новная погрешность канала телеизмерения устройства (комплекса) — наибольшая разность выходной величины, приведенной к входной в соответствии с градуировочной характеристикой, и входной величины:
D=у-х, (13.1) где D - абсолютная погрешность. Значения величин у н х ясны из рис. 13.1.
Относительная погрешность 6' — отношение абсолютной погрешности к действительному значению измеряемой величины, выраженное в процентах.
Приведенная погрешность 6—отношение абсолютной погрешности к величине диапазона шкалы измерений (Хтаи~Хп,щ):
6=D/(Xmax - Xmin). (13.2)
Абсолютнаядoполнительнаяпогрешность канала телеизмерения устройства —наибольшая разность значений входной (выходной) величины при нормальных условиях и при воздействии влияющего фактора (ГОСТ 26.205—83).
Дополнительные погрешности вызываются различными отклонениями от нормальных условий работы, например изменением температуры окружающей среды, изменением напряжения питания за допустимые пределы, появлением помех, внешних магнитных полей и т. п.
Согласно ГОСТ 26.205—83, допускается отклонение напряжения питания от плюс 10 до минус 15% (класс устройств АСЗ) и от плюс 15 до минус 20 % (класс устройств АС4) от номинальных параметров питания. Номинальные параметры питания устройств от электрических сетей переменного тока частотой 50 Гц должны быть следующие: напряжение однофазной сети — 220 В; напряжение трехфазной сети — 220/380 В. Допускается отклонение частоты 50 Гц от плюс 2 до минус 2 % (класс 3) и от плюс 5 до минус 5 % (класс 4). Устройства (кроме телеизмерительных устройств систем интенсивности) должны выполнять заданные функции при отклонении уровня сигнала на входе приемного устройства на плюс 50 и минус 50 % от номинального значения входного сигнала.
Телеизмеряемые величины должны воспроизводиться аналоговым или цифровым способом на указывающих или регистрирующих приборах в абсолютных значениях измеряемых величин. Это значит, что если передаваемая величина выражается в тоннах, то, несмотря на все промежуточные преобразования этой величины, неизбежные при передаче, прибор на приемной стороне должен быть отградуирован в тоннах. Лишь в особых случаях допускается воспроизведение телеизмерений в процентах.
Суммирование измеряемых величин. Необходимость суммирования возникает при наличии многих источников одной и той же информации на приемной стороне. В этом случае суммирование осуществляют на передающей стороне. При сильно рассредоточенных объектах и большом числе контролируемых пунктов суммирование телеизмеряемых величин осуществляют на приемной стороне.
Суммируются вспомогательные величины у, в которые преобразуются измеряемые величины х. Поэтому существуют методы суммирования (сложения) токов, напряжений, импульсов, магнитных потоков, вращающих моментов, угловых и линейных перемещений, параметров электрических цепей (сопротивлений, емкостей, индуктивностей).Условия суммирования записывают в виде
(13.3.)
Syi = K S xi.
Классификация систем телеизмерения.
Наиболее распространена классификация по параметру, т. е. методам, с помощью которых передается значение измеряемой величины (рис. 13.2). При такой классификации системы телеизмерения делятся на импульсные и частотные. Общей для этих групп является частотно-импульсная система.
Все эти системы могут быть одноканальными, когда по одной линии связи передается только одно измерение, и многоканальными, когда по одной линии связи передается много измерений (классификация по числу измеряемых величин). Многоканальность достигается теми же методами, что и в телеуправлении, т. е. с помощью частотного и временного способов разделения сигналов. Многоканальная система позволяет вести наблюдения за показаниями многих измеряемых величин одновременно в отличие от систем, использующих телеизмерение по вызову, в которых наблюдение показаний различных объектов телеизмерения происходит поочередно.
По методам воспроизведения измеряемой величины системы телеизмерения подразделяют на аналоговые и цифровые.
В аналоговых системах используются непрерывные (аналоговые) сигналы. Параметр аналогового сигнала является однозначной непрерывной функцией измеряемой величины. К аналоговым относятся сигналы, модулированные с помощью непрерывных модуляций и таких импульсных модуляций, как широтная, фазовая и частотная. В аналоговых системах может применяться квантование по времени, но отсутствует квантование по уровню.