На рис. 6 представлена схема одного из таких устройств. С генератора Г напряжение синусоидальной формы Uвх поступает на вход контролируемого АЦП и
Рис. 6. Схема устройства автоматического контроля параметров АЦП
на один из входов дифференциального усилителя У. Результат преобразования в виде кода Ni с частотой запуска АЦП заносится в регистр. Затем код Ni преобразуется с помощью образцового ЦАП (разрядность которого должна быть, по крайней мере, на четыре единицы больше разрядности контролируемого АЦП) в аналоговый сигнал Uвыx, подаваемый на другой вход усилителя. Разностный сигнал усилителя ΔU=k(Uвх — Uвыч) характеризуется суммой погрешности квантования (±1/2)А и погрешности линейности АЦП. Следует учитывать, что любой сдвиг по фазе между входным сигналом АЦП и задержанным выходным сигналом ЦАП дает дополнительную погрешность. Поэтому для минимизации этой дополнительной погрешности частота входного сигнала должна быть достаточно низкой и определять ее необходимо исходя из быстродействия контролируемого АЦП и образцового ЦАП.
На рис. 7 приведена схема еще одного устройства автоматического контроля АЦП, где образцовый ЦАП используется в качестве формирователя входного воздействия на контролируемый преобразователь. Формирователь кодов ФК обеспечивает формирование на цифровых входах образцового ЦАП любой требуемой кодовой комбинации. Выходное напряжение ЦАП подается на вход контролируемого АЦП. Цифровой код Ni с АЦП передается в запоминающий регистр ЗРг после каждого преобразования. Цифровое слово Ni’, присутствующее на входе образцового ЦАП, вычитается в устройстве ВУ из кода Ni и цифровая ошибка ΔN=Ni—Ni’ подается на ЦАП с низкой разрешающей способностью, на выходе которого
Рис. 7. Схема устройства контроля АЦП с разбраковкой результата контроля
она представляется в аналоговой форме. Кроме того, цифровая ошибка ΔN может быть подана на цифровой компаратор ЦК, в который занесены верхний и нижний пределы ее допустимых значений, что позволяет произвести проверку АЦП по принципу «годен—не годен», т. е. разбраковку контролируемых преобразователей. Разрешающая способность образцового ЦАП в данной схеме, как и в предыдущей, должна быть на порядок выше, чем в контролируемом АЦП, чтобы уровень квантования аналогового сигнала на входе АЦП не ограничивал разрешающую способность считывания ошибки.
Как указывалось, сложность контроля параметров АЦП заключается в том, что каждому его выходному числовому коду соответствует определенная непрерывная аналоговая входная величина (ширина ступеньки на рис. 5, 10.30), крайние значения которой формируют соответствующие смежные числовые переходы. Поэтому для более качественного контроля характеристик АЦП требуется определение значения каждого из переходных уровней входного напряжения, что не обеспечивается предыдущей схемой.
На рис. 8 изображена схема устройства, осуществляющего контроль выходной характеристики АЦП с автоматическим поиском переходных уровней. Это достигается включением контролируемого АЦП в цепь обратной связи, регулирующей его входное напряжение. Цифровой код Ni определяемого перехода с формирователя кодов ФК поступает на цифровой компаратор ЦК и на образ
Рис. 8. Схема устройства контроля АЦП с автоматическим поиском переходных уровней
цовый ЦАП. На другой вход компаратора подается выходной цифровой сигнал контролируемого АЦП. Цифровой компаратор вырабатывает сигнал, управляющий ключом К, через который на вход интегратора И поступает напряжение Но определенной полярности, формируемое программируемым источником напряжения ПИН и инвертором Ин. Система сфазирована таким образом, что изменяющееся выходное напряжение интегратора приближает выходной код АЦП к записанному в компаратор коду Ni. В момент достижения равенства кодов направление изменения выходного напряжения интегратора изменяется на противоположное вследствие переключения ключа К. В дальнейшем процесс продолжается при периодическом пилообразном колебании выходного напряжения интегратора вблизи уровня перехода. Точность, с которой производится поиск уровня перехода, определяется постоянной времени Т интегратора, его входным интегрируемым напряжением Uo и быстродействием контролируемого АЦП. Действительно, приращение ΔUи выходного напряжения интегратора за время интегрирования tи определяется соотношением
ΔUи=U0tи/T
Длительность интегрирования зависит от начальной разности кодов, поступающих на цифровой компаратор:
при большой разности длительность больше. Минимальное значение tn будет при периодическом колебании выходного напряжения интегратора относительно уровня перехода. При этом tи определяется периодичностью отсчетов АЦП, т. е. его быстродействием, и в предельном случае не превышает периода запуска АЦП Тзап. Для обеспечения требуемой точности контроля значение ΔUи не должно превышать нескольких процентов от значения младшего разряда Л контролируемого АЦП. При известных параметрах контролируемого АЦП (Δ и Тзап) и постоянной времени Т интегратора входное интегрируемое напряжение Uo для допустимой относительной погрешности γ= ΔUи/Δ поиска уровня перехода определяется неравенством
и для каждого конкретного типа АЦП формируется программируемым источником напряжения ПИН. Для уменьшения времени поиска уровня перехода при больших начальных рассогласованиях входных кодов компаратора начальное значение Uo устанавливается значительно большим требуемого до момента наступления равенства кодов, после чего U0 автоматически приводится к заданному значению. Найденное таким образом напряжение перехода Ui2 сравнивается затем дифференциальным усилителем У с напряжением Ui1, создаваемым образцовым ЦАП. Разностное выходное напряжение усилителя и будет характеризовать погрешность контролируемого АЦП в заданной точке характеристики.
Рассмотренные методы контроля АЦП с использованием образцового ЦАП нашли широкое применение при создании автоматизированного контрольно-измерительного оборудования.
Для преобразования быстроизменяющихся сигналов с широким частотным спектром, быстрого ввода информации в ЭВМ, в частности аналоговых сигналов с первичных преобразователей при работе в многоканальных информационных системах, требуются АЦП, имеющие хорошую линейность и малое время преобразования. Последнее определяют как интервал времени, в течение которого выходной сигнал АЦП при подаче ступенчатого входного сигнала достигает значения, отличающегося от установившегося не более чем на допустимую погрешность. Следует иметь в виду, что при определении времени преобразования необходимо учитывать статическую погрешность преобразования, чтобы последняя не входила составной частью в результирующую погрешность определения времени преобразования. Поэтому под установившимся значением выходного сигнала АЦП понимают результат преобразования в статическом режиме, когда процесс преобразования заведомо завершился.