де Δн и Δф — номинальное и фактическое значения единицы младшего разряда преобразователя.
Относительная погрешность полной шкалы определяется выражением
и, следовательно, не зависит от коэффициента преобразования ЦАП.
Погрешность полной шкалы АЦП характеризуется отклонением действительного входного напряжения от его расчетного значения для полной шкалы выходного кода. Она может быть обусловлена погрешностями опорного напряжения Uoп, многозвенного резистивного делителя, коэффициента усиления усилителя и т. д. Погрешность шкалы может быть скорректирована с помощью регулирования коэффициента усиления выходного усилителя или опорного напряжения.
Смещение нуля (погрешность нуля) равно выходному напряжению ЦАП при нулевом входном коде или среднему значению входного напряжения АЦП, необходимому для получения нулевого кода на его выходе. Смещение нуля вызвано током утечки через разрядные ключи ЦАП,
напряжением смещения выходного усилителя либо компаратора. Данную погрешность можно скомпенсировать с помощью внешней по отношению к ЦАП или АЦП регулировки нулевого смещения. Погрешность нуля δ0 может быть выражена в процентах от полной шкалы или в долях младшего разряда. Следует отметить, что погрешность полной шкалы определяют с учетом смещения нуля характеристики преобразователя, в то время как при определении погрешности линейности линеаризующая прямая должна проходить через начало реальной функции преобразования fр(х), т. е. смещение нуля δ0 необходимо корректировать, чтобы не внести погрешность в измерение линейности, поскольку она суммируется всякий раз при считывании выходного сигнала. Действительно, для ЦАП справедливо неравенство
Uвых(B1+B2+…+Bm)+δ0≠UвыхB1+ UвыхB2+…+ UвыхBm+mδ0
в левой части которого погрешность нуля 6о суммируется один раз (все разряды включены), а в правой—т раз (m отдельных считываний выходного сигнала ЦАП). При этом погрешность измерения нелинейности будет меньше, если смещение нуля 6о запоминается и вычитается из напряжения каждого последующего считываемого разряда до того, как будет произведено определение нелинейности.
Абсолютная погрешность преобразования отражает отклонение фактического выходного сигнала преобразователя от теоретического, вычисленного для идеального преобразователя. Этот параметр указывается обычно в процентах к полной шкале преобразования и учитывает все составляющие погрешности преобразования (нелинейность, смещение нуля, коэффициент преобразования). Поскольку абсолютное значение выходного сигнала преобразователя определяется опорным напряжением Uoп[см. соотношения (3), (4)], то абсолютная погрешность преобразования находится в прямой зависимости от стабильности напряжения Uоп. В большинстве преобразователей используется принцип двойного кодирования. Поэтому для получения кратного значения младшего разряда обычно выбирают Uon= 10,24 В. В этом случае для 12-разрядных ЦАП расчетное номинальное значение младшего разряда Δ=2,5 мВ и напряжение полной шкалы Uп.ш.н= 2,5 (212—1) мВ= 10237,5 мВ.
Изменение напряжения Uon, например, на 1% вызовет изменение абсолютной погрешности преобразования также на 1%, что составит в верхней точке диапазона 102,375 мВ.
Дифференциальная нелинейность δн.д определяется отклонением приращения выходного сигнала преобразователя от номинального значения младшего разряда при последовательном изменении кодового входного сигнала на единицу. Дифференциальная нелинейность идеального преобразователя равна нулю. Это означает, что при изменении входного кода преобразователя на единицу его выходной сигнал изменяется на значение младшего разряда. Допустимым значением дифференциальной нелинейности считается (1/2)[ПВ1] Δ(1/2 значения младшего разряда).
Дифференциальная нелинейность может быть вычислена таким образом. Для конкретного m-разрядного преобразователя расчетное значение единицы младшего разряда Δр=[Uп.ш/(2m—l).
обеспечивающее контроль схем различного назначения, обычно сложное и дорогостоящее. Установки специального назначения, контролирующие схемы, как правило, одного типа, выполняют контроль быстрее, и с ними могут работать люди, не обладающие большим опытом и мастерством.
В преобразователях с высокой разрешающей способностью необходимо проконтролировать большое количество параметров для получения информации о работе преобразователя. Например, 12-разрядный ЦАП или АЦП имеет 212, или 4096, возможных комбинаций вход— выход. Безусловно, без применения автоматизированной высокопроизводительной установки решить проблему контроля подобных преобразователей невозможно.
При контроле ИМС АЦП, особенно многоразрядных, необходимо соблюдать меры предосторожности при подключении контролируемого преобразователя к установке контроля. Линии связи должны быть такой длины и такого сопротивления, чтобы падение напряжения на них не вызвало значительного увеличения погрешности измерения параметров ИМС АЦП.
Если проверяют ЦАП с токовым выходом, то к его выходу подключают операционный усилитель, обеспечивающий преобразование выходного тока ЦАП в напряжение. При этом резистор обратной связи, входящий в состав ЦАП, подключают без подстроечных потенциометров, чтобы можно было измерить погрешность смещения нуля и полной шкалы.
Далее перед измерением параметров ЦАП нужно определенное время для его прогрева, чтобы обеспечить установившийся тепловой режим контроля. Это относится в первую очередь к контролю нелинейности ЦАП, поскольку требуется большое количество измерений, за время которых из-за нагрева ЦАП его параметры могут существенно измениться. Например, у ЦАП с рассеиваемой мощностью порядка 500 мВт время прогрева в зависимости от типа корпуса колеблется от 5 до 15 мин.
С целью уменьшения времени контроля желательно проводить контроль параметров ЦАП не во всех точках его выходной характеристики. Минимальный объем получаем при контроле значений всех разрядов, включаемых по одному. Однако такой контроль допустим только в случае малого взаимного влияния разрядов, когда все разряды или комбинации разрядов, которые включаются, полностью независимы от включенного (выключенного) состояния других разрядов. В противном случае для получения достоверного результата следует производить контроль по всем дискретным значениям выходного сигнала, т. е. в 2mочках характеристики.
Далее будут рассмотрены методы контроля статических и динамических параметров ИМС АЦП, которые могут быть использованы в автоматизированных системах контроля, предназначенных как для обеспечения серийного производства ИМС АЦП, так и для их входного контроля.
Рис. 4. Характеристика АЦП при наличии шума Рис. 5. Характеристика идеального четырехразрядного АЦП
Из-за неопределенности квантования при аналого-цифровом преобразовании, равной 1/2 значения младшего разряда Δ, контроль АЦП представляет большие трудности по сравнению с контролем ЦАП, поскольку приходится не просто измерять выходной сигнал для заранее определённого кода (в случае ЦАП), но также определять как выходной код, так и точку (момент) изменения выходного кода при непрерывном изменении входного напряжения. Шумы (в преобразуемом сигнале или в преобразователе) вносят неопределенность в точное задание аналоговых входных величин, при которых происходят кодовые преобразования выходных сигналов, а также увеличивают диапазон квантования. Характер погрешности, обусловленной влиянием шума, показан на рис. 4.
При отсутствии шума и погрешности линейности АЦП изменение выходного кода происходит при номинальных значениях входного напряжения. При отсутствии шума и наличии допустимых погрешностей линейности АЦП выходной код изменяется при изменении входного напряжения относительно его номинального значения на (±1/2) Δ. Шумы вызывают увеличение неопределенности момента изменения выходного кода (шумы показаны на рис. 4 в виде тонких линий).
Отметим, что точность АЦП не может быть лучше его разрешающей способности. В ЦАП, напротив, технические требования по точности превосходят требования по разрешающей способности. Такое различие объясняется противоположным характером этих преобразователей:
выход ЦАП может с высокой точностью воспроизводить уровень, являющийся мерой точного числа, между тем как выходной уровень АЦП определяется любой входной величиной в пределах кванта.
Наибольшим числом контролируемых параметров обладают АЦП последовательного приближения, в котором применяются ЦАП и компаратор в цепи обратной связи. Эти преобразователи, так же как и ЦАП, характеризуются дифференциальной нелинейностью и немонотонностью в отличие от интегрирующих АЦП, у которых может наблюдаться только нелинейность. На рис. 5 показана выходная характеристика идеального четырехразрядного АЦП, каждая ступенька которой постоянна по ширине и равна Δ. Тем не менее даже для идеального АЦП (всех типов) существует неопределенность, равная (±1/2)А относительно входного напряжения, соответствующего какому-либо выходному коду АЦП. У реального АЦП (имеющего нелинейность) неопределенность возрастает до суммы погрешностей квантования и линейности. Если ЦАП, применяемый в АЦП последовательного приближения, нелинеен, то размер ступеньки отклонится от идеального значения и напряжения переходов сдвинутся от напряжении идеальных переходов. На рис. 10.30 приведена характеристика АЦП, внутренний ЦАП которого имеет погрешности разрядов: δ1=(l/2)A (при коде 1000), δ2=(—1/2)А (при коде 0100), δ3=0 (при коде 0010), δ4=0 (при коде 0001). Области рис. 10.30, отмеченные пунктирными кружками, свидетельствуют о том, что изменения в погрешности дифференциальной линейности (а следовательно, и в погрешности линейности) имеют место при переносах кода.Метод контроля параметров АЦП, который необходимо использовать в каждом конкретном случае, зависит от многих причин. Одна из них—время преобразования контролируемого АЦП. Для преобразователей со временем преобразования менее 100 мкс (преобразователи последовательного .приближения) могут быть использованы все методы контроля. Иначе обстоит дело при контроле «медленных» АЦП. Например, преобразователи интегрирующего типа, время преобразования которых составляет десятки и сотни миллисекунд, не могут быть исследованы динамическим методом, предусматривающим наблюдения погрешности с помощью осциллографа.Простейший метод контроля параметров АЦП заключается в применении образцового ЦАП для формирования входного аналоговового сигнала контролируемого АЦП и в последующем сравнении входного кода образцового ЦАП и выходного кода АЦП. Однако он не определяет точного значения входного сигнала в момент перехода кода в пределах А. Поэтому таким методом можно определить точность калибровки (погрешность шкалы), нелинейность, дифференциальную нелинейность АЦП с погрешностью контроля не менее Δ. Рассмотрим схемы нескольких устройств, позволяющих автоматизировать процесс контроля параметров АЦП, в которых используется многоразрядный образцовый ЦАП, предназначенный для формирования входного сигнала АЦП либо для восстановления аналогового сигнала из выходного кода АЦП. При этом линейность ЦАП должна быть на порядок выше линейности проверяемого АЦП.