Наиболее простыми по структуре среди интегрирующих преобразователей являются АЦП с преобразованием напряжения в частоту, построенные на базе интегрирующего усилителя и аналогового компаратора. Погрешность их преобразования определяется нестабильностью порога срабатывания компаратора и постоянной времени интегратора. Более высокими метрологическими характеристиками обладают АЦП, реализованные по принципу двойного интегрирования (например, ИМС, 11-разрядного АЦП К572ПВ2), поскольку при этом практически удается исключить влияние на погрешность преобразования нестабильности порога срабатывания компаратора и постоянной времени интегратора.
Анализ описанных методов преобразования и структурных схем АЦП позволяет сделать вывод, что наибольшим быстродействием обладают АЦП прямого преобразования, однако их разрядность невысока. АЦП поразрядного уравновешивания, обладая средним быстродействием, дают возможность получить достаточно высокую разрешающую способность. Но помехозащищенность тех и других преобразователей невысока. АЦП интегрирующего типа, обладая наименьшим быстродействием, обеспечивают наибольшую помехозащищенность и точность преобразования.
Основными параметрами, характеризующими ИМС АЦП, являются разрешающая способность, нелинейность, коэффициент преобразования, погрешность полной шкалы, смещение нуля, абсолютная погрешность, дифференциальная нелинейность, монотонность, время преобразования.
Разрешающая способность определяется числом дискретных значений выходного сигнала преобразователя, составляющих его предел преобразования. Чем больше число дискретных значений, тем выше разрешающая способность преобразователя. Двоичный m-разрядный преобразователь имеет 2m дискретных значений, а его разрешающая способность равна 1/2m. В преобразователях различают наименьший и наибольший значащие разряды. В двоичной системе кодирования наименьший значащий разряд — это разряд, имеющий наименьший вес. Вес младшего разряда определяет разрешающую способность. Наибольший значащий разряд соответствует наибольшему весу. В двоичной системе кодирования наибольший значащий разряд имеет вес 1/2 номинального значения максимально возможного выходного сигнала при всех включенных разрядах (полной шкалы преобразования).
Разрешающая способность характеризует как ЦАП, так и АЦП и может выражаться либо в процентах, либо в долях полной шкалы. Например, 12-разрядный АЦП имеет разрешающую способность 1/4096, или 0,0245% от значения полной шкалы. Преобразователь с полной шкалой напряжения 10 В может обеспечивать изменение выходного кода на единицу при изменении входного напряжения на 2,45 мВ. Аналогично 12-разрядный ЦАП дает изменение выходного напряжения на 0,0245% от значения полной 'шкалы при изменении двоичного входного кода на один двоичный разряд. Разрешающая способность является скорее расчетным параметром, а не технической характеристикой, поскольку она не определяет ни точность, ни линейность преобразователя.
Нелинейность dн, или интегральная нелинейность, характеризуется отклонением dн(х) реальной характеристики преобразователя fp(x) от прямой. При этом значение dн(х) зависит от метода линеаризации. Рис. 2,а иллюстрирует способ линеаризации, когда линеаризующая прямая проходит через крайние точки реальной характеристики ЦАП. При этом наблюдается максимальная погрешность линейности (нелинейность dн). На рис. 2,б прямая проводится таким образом, что максимальное отклонение fp(x) от прямой получается в два раза меньше. Однако для этого необходимо знать характер реальной характеристики ЦАП, что очень 'сложно обеспечить в серийном производстве. Поэтому, как правило, погрешность линейности определяют при прохождении линеаризующей прямой через крайние точки характеристики fp (х). Для определения нелинейности (которая обычно выражается в процентах от полной шкалы или в долях единицы младшего разряда) необходимо знать аналитическую зависимость между выходным аналоговым сигналом ЦАП и его цифровым входом. Для ЦАП с двоичными т-разрядами аналоговый выход Uвых зависит от входного двоичного кода в идеальном случае (в отсутствие погрешностей преобразования) таким образом:
Uвых = Uоп(B12-1+B22-2+…+ Bm2-m), (1)
где B1, B2, ..., Bm—коэффициенты двоичного числа, имеющие значение единицы или нуля (что соответствует включению или выключению разряда); Uon—опорное напряжение ЦАП. Так как
то выходное напряжение ЦАП при всех включенных разрядах (B1, B2, ..., Bm = 1) определяется соотношением
(2)Таким образом, при включении всех разрядов выходное напряжение ЦАП, равное напряжению полной шкалы Uп.ш, отличается от опорного напряжения Uоп на значение младшего разряда преобразователя Δ:
(3)При включении i-ro разряда выходное напряжение ЦАП
Uвых=Uоп2-i (4)
Выражение (1) показывает линейную зависимость между аналоговым выходом и цифровым входом преобразователя. Следовательно, сумма аналоговых выходных величин, полученная для любой комбинации разрядов, действующих независимо, должна быть равна аналоговому сигналу, который получается при одновременном включении всех разрядов этой комбинации.
Преобразователь считается линейным, если его максимальная погрешность линейности δn не превышает 1/2 значения младшего разряда Δ. Оценку линейности АЦП проводят так же, как и для ЦАП.
Таким образом, нелинейность характеризует как ЦАП, так и АЦП и наряду с дифференциальной нелинейностью имеет первостепенное значение для оценки качества преобразователей, поскольку все другие погрешности (смещение нуля, погрешность полной шкалы и т. д.) могут быть сведены к нулю соответствующими регулировками.
Коэффициент преобразования Кпр определяет наклон характеристики преобразователя. Как отмечалось, для идеального ЦАП наклон характеристики должен быть таким, чтобы при включении всех разрядов (двоичный код полной шкалы No на его цифровых входах равен 111...1) выходное напряжение полной шкалы Uп.ш ЦАП было меньше опорного напряжения Uоп на значение младшего разряда Δ, что соответствует прямой 1 на рис. 3 [соотношение (2)]. Для ЦАП с токовым выходом наклон характеристики определяется номиналом резистора обратной связи Roc (Рис. 4), который находится в составе преобразователя и предназначен для включения в цепь обратной связи усилителя-преобразователя тока в напряжение. При номинальном значении Rос напряжение Un.ш отличается от Uon на значение младшего разряда Δ. Если номинал Roc больше, то коэффициент преобразования возрастает (прямая 3 на рис. 3), если меньше,—то уменьшается (прямая 2 на рис 3). Это объясняется тем, что абсолютные значения младшего разряда Δ2 и Δ3 для характеристик 2 и 3 рис. 3 отличаются от расчетного номинального значения Δ1, определяемого соотношением (3). При этом фактические значения младших разрядов преобразования определяются соотношением
Δф=Uп.ш.ф./(2m-1)
где Uп.ш.ф.—фактическое значение полной шкалы преобразователя.
Погрешность полной шкалы δп.ш отражает степень отклонения реального коэффициента преобразования от расчетного, т. е. под δп.ш понимают разность между номинальным значением полной шкалы преобразователя Uп.ш.н, определяемым соотношением (2), и его фактическим значением Uп.ш.ф. Таким образом, для ЦАП