Теперь уже можно вычислить элементы матрицы (9.48). Для определения элемента
берется рассеянное поле, возбужденное нулевой модой пустого резонатора, т. е. , затем оно в соответствии с (9.49) домножается на (9.55) и интегрируется. При этом необходимо помнить, что базисные функции предполагались нормированными. Поэтому функцию (9.55) необходимо предварительно пронормировать. В силу осевой симметрии системы поверхностный интеграл (9.49) можно представить в координатах вращения. Интеграл по берется аналитическим, а по радиальной координате - численно. Остальные элементы отыскиваются точно так же.Далее решается задача на собственные значения, а затем с помощью формул (9.40) и (9.41) находятся изменения добротности и сдвиг частоты.
2.2 ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ ОТКРЫТОГО РЕЗОНАТОРА С ДИЭЛЕКТРИЧЕСКИМ ДИСКОМ, НЕСООСНЫМ С ЗЕРКАЛАМИ [72]
При проведении измерений параметров диэлектрика образец в виде диска часто удобнее расположить несоосно с зеркалами и, в частности, так, чтобы оси резонатора и диска были перпендикулярны (рис. 9.7). Такое расположение диска нарушает осевую симметрию задачи. В общем случае отход от осевой симметрии очень -сильно усложняет решение, поскольку теряется основное преимущество систем вращения — независимость отдельных азимутальных гармоник полей.
Рис. 9.7. Геометрия открытого резонатора с несоосными зеркалом и диском
Однако в рассматриваемой задаче анализа полей в высокодобротном открытом резонаторе несоосность вносит технические, но не принципиальные затруднения. Действительно, для измерений параметров диэлектрический образец берется небольшим по сравнению с размерами резонатора. Поэтому его внесение в резонатор не приводит к переходу к другой моде, а лишь несколько меняет добротность и резонансную частоту той моды, которая существовала без диэлектрика. Таким образом, за счет фильтрующих свойств резонатора новых азимутальных гармоник не появляется и основная трудность в несоосных системах вращения снимается. Надо лишь следить за тем, чтобы на других азимутальных гармониках у пустого резонатора не было поблизости от частоты рабочей моды других высокодобротных мод.
Метод решения задачи остается в общих чертах тем же, что и в предыдущем параграфе, но с некоторыми усложнениями. Главное из них — это необходимость введения двух систем координат вращения: одной, связанной с зеркалами резонатора (ось вращения у}, и второй, связанной с диэлектрическим телом (ось вращения z) (рис. 9.7). Поле, рассеянное диском, не обладает теперь осевой симметрией по отношению к зеркалам, что существенно затрудняет интегрирование по поверхности зеркал, необходимое при применении метода Галеркина.
Рассмотрим теперь этапы решения задачи. Как и ранее, в методе Галеркина в качестве базиса используются собственные функции пустого резонатора, а точнее, их приближенное представление в виде гауссова пучка.
Пусть центр диска по-прежнему совпадает с центром резонатора, а ось его симметрии повернута на 90° по отношению к оси резонатора (см. рис. 9.6). Решение начинается с нахождения азимутальных гармоник падающего по отношению к диску поля и соответствующих ему первичных токов.
Падающее поле вблизи диска выражается функциями (9.54) и (9.56), которые с учетом изменившейся системы координат запишем так:
(9.59) (9.60)Положим, что основная поляризация поля в резонаторе
. Эквивалентные токи в координатах вращения, связанных с диском, тогда имеют вид: (9.61)Здесь, как и в (9.58), использованы обозначения § 3.3. Переход от декартовых к координатам вращения дает
(9.62)Коэффициенты А, В и D зависят от формы поверхности, на которой находится точка наблюдения. На плоском торце
( - радиус диска, - его толщина); на цилиндрической поверхности .Воспользуемся малостью диэлектрического тела по сравнению с размерами резонатора, т. е. учтем, что
или и . Это позволяет представить экспоненты двумя членами ряда Тейлора . (9.63)После этого токи записываются в виде
(9.64)Для следующего типа колебаний «10 q» выражения для первичных токов имеют тот же вид, но A1=3A, D1=3D, B1=B. Далее поля разлагаются в ряд Фурье. Поскольку тело невелико, можно ограничиться небольшим числом гармоник. Используя формулы для коэффициентов ряда Фурье и интегральное представление функции Бесселя (9.21), получаем выражения для гармоник падающих токов. При этом в силу симметрии в случае синфазных токов на зеркалах присутствуют только нечетные гармоники, что соответствует максимуму поля резонатора в области диска:
(9.65)Здесь
.Переход к отрицательным индексам происходит так же, как и ранее.
После вычисления первичных токов используется алгоритм решения задачи возбуждения тела вращения, основанный на уравнении (3.85). Результат получается в виде распределения азимутальных гармоник плотностей эквивалентных токов на поверхности диэлектрика.
Далее по этому распределению нетрудно рассчитать рассеянное поле всюду и в том числе на поверхности зеркала. Как и в § 9.4, это поле и определяет элементы матрицы однородной СЛАУ (9.48). Расчет ведется в тех же приближениях с учетом изменившейся системы координат. В частности, асимптотическая формула для функции
в этих координатах имеет вид . (9.66)Существенные затруднения вызывает вычисление интегралов (9.49), определяющих элементы матрицы СЛАУ (9.48).
Интеграл здесь поверхностный, т. е. двойной, и численное интегрирование требует больших затрат времени ЭВМ. Выходом из положения является аналитическое вычисление одного из интегралов. Для этого можно воспользоваться тем, что в направлении, перпендикулярном оси
(см. рис. 9.7), каждая из азимутальных гармоник рассеянного поля имеет синусоидальную зависимость. Формально удобно вести это интегрирование по декартовой координате в пределах от до . Зависимость поля будет синусоидальной только на окружности с центром, совпадающим с диском1. Отличие этой окружности от меридиональной линии зеркала учтем только в фазе. Поправочный множитель, как показывает геометрический расчет, имеет вид .Зависимость поля каждой гармоники от
на зеркале может быть представлена только в числах, поэтому интеграл по в пределах - берется численно. Таким путем приходим к интегралу (9.67)где
— гиперсфероидальные функции, которые берутся в приближении гауссова пучка, т. е. в виде (9.55) и (9.57).Формула (9.67) учитывает векторный характер поля. Все расчеты ведутся в предположении, что основная поляризация в резонаторе
и, следовательно, . В рассеянном поле при использовании метода Галеркина надо брать ту же поляризацию. Она в координатах вращения, связанных с диском, представляет собой . Интеграл по , как уже говорилось, можно взять аналитически. Не останавливаясь на подробностях, их можно найти в [72], заметим, что этот интеграл можно свести к неполной гамма-функции. Для вычисления последней имеются быстро сходящиеся ряды. Нахождение одномерного интеграла по численным методом труда не представляет.