Смекни!
smekni.com

Задача обработки решеток (стр. 6 из 9)

Теперь уже можно вычислить элементы матрицы (9.48). Для определения элемента

берется рассеянное поле, возбужденное нулевой модой пустого резонатора, т. е.
, затем оно в соот­ветствии с (9.49) домножается на (9.55) и интегрируется. При этом необходимо помнить, что базисные функции предполагались нормированными. Поэтому функцию (9.55) необходимо предвари­тельно пронормировать. В силу осевой симметрии системы по­верхностный интеграл (9.49) можно представить в координатах вращения. Интеграл по
берется аналитическим, а по радиаль­ной координате
- численно. Остальные элементы
отыски­ваются точно так же.

Далее решается задача на собственные значения, а затем с по­мощью формул (9.40) и (9.41) находятся изменения добротности и сдвиг частоты.

2.2 ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ ОТКРЫТОГО РЕЗОНАТОРА С ДИЭЛЕКТРИЧЕСКИМ ДИСКОМ, НЕСООСНЫМ С ЗЕРКАЛАМИ [72]

При проведении измерений параметров диэлект­рика образец в виде диска часто удобнее расположить несоосно с зеркалами и, в частности, так, чтобы оси резонатора и диска были перпендикулярны (рис. 9.7). Такое расположение диска нарушает осевую симметрию задачи. В общем случае отход от осевой симметрии очень -сильно усложняет решение, поскольку теря­ется основное преимущество систем враще­ния — независимость отдельных азимуталь­ных гармоник полей.

Рис. 9.7. Геометрия открытого резонатора с несоосными зеркалом и диском

Однако в рассматриваемой задаче анализа полей в высокодобротном открытом резонаторе несоосность вносит технические, но не принципиальные затруднения. Действительно, для измерений параметров диэлектрический образец берется небольшим по срав­нению с размерами резонатора. Поэтому его внесение в резона­тор не приводит к переходу к другой моде, а лишь несколько ме­няет добротность и резонансную частоту той моды, которая су­ществовала без диэлектрика. Таким образом, за счет фильтрую­щих свойств резонатора новых азимутальных гармоник не появ­ляется и основная трудность в несоосных системах вращения сни­мается. Надо лишь следить за тем, чтобы на других азимуталь­ных гармониках у пустого резонатора не было поблизости от час­тоты рабочей моды других высокодобротных мод.

Метод решения задачи остается в общих чертах тем же, что и в предыдущем параграфе, но с некоторыми усложнениями. Главное из них — это необходимость введения двух систем ко­ординат вращения: одной, связанной с зеркалами резонатора (ось вращения у}, и второй, связанной с диэлектрическим телом (ось вращения z) (рис. 9.7). Поле, рассеянное диском, не обладает те­перь осевой симметрией по отношению к зеркалам, что сущест­венно затрудняет интегрирование по поверхности зеркал, необхо­димое при применении метода Галеркина.

Рассмотрим теперь этапы решения задачи. Как и ранее, в ме­тоде Галеркина в качестве базиса используются собственные функции пустого резонатора, а точнее, их приближенное пред­ставление в виде гауссова пучка.

Пусть центр диска по-прежнему совпадает с центром резона­тора, а ось его симметрии повернута на 90° по отношению к оси резонатора (см. рис. 9.6). Решение начинается с нахождения азимутальных гармоник падающего по отношению к диску поля и соответствующих ему первичных токов.

Падающее поле вблизи диска выражается функциями (9.54) и (9.56), которые с учетом изменившейся системы координат запишем так:

(9.59)

(9.60)

Положим, что основная поляризация поля в резонаторе

. Экви­валентные токи в координатах вращения, связанных с диском, тогда имеют вид:

(9.61)

Здесь, как и в (9.58), использованы обозначения § 3.3. Переход от декартовых к координатам вращения дает

(9.62)

Коэффициенты А, В и D зависят от формы поверхности, на которой находится точка наблюдения. На плоском торце

(
- радиус диска,
- его толщина); на цилиндрической поверхности
.

Воспользуемся малостью диэлектрического тела по сравнению с размерами резонатора, т. е. учтем, что

или
и
. Это позволяет представить экспоненты двумя членами ря­да Тейлора

. (9.63)

После этого токи записываются в виде

(9.64)

Для следующего типа колебаний «10 q» выражения для пер­вичных токов имеют тот же вид, но A1=3A, D1=3D, B1=B. Да­лее поля разлагаются в ряд Фурье. Поскольку тело невелико, можно ограничиться небольшим числом гармоник. Используя формулы для коэффициентов ряда Фурье и интегральное пред­ставление функции Бесселя (9.21), получаем выражения для гар­моник падающих токов. При этом в силу симметрии в случае синфазных токов на зеркалах присутствуют только нечетные гар­моники, что соответствует максимуму поля резонатора в области диска:

(9.65)

Здесь

.

Переход к отрицательным индексам происходит так же, как и ранее.

После вычисления первичных токов используется алгоритм ре­шения задачи возбуждения тела вращения, основанный на уравнении (3.85). Результат получается в виде распределения азиму­тальных гармоник плотностей эквивалентных токов на поверх­ности диэлектрика.

Далее по этому распределению нетрудно рассчитать рассеян­ное поле всюду и в том числе на поверхности зеркала. Как и в § 9.4, это поле и определяет элементы матрицы однородной СЛАУ (9.48). Расчет ведется в тех же приближениях с учетом изменив­шейся системы координат. В частности, асимптотическая форму­ла для функции

в этих координатах имеет вид

. (9.66)

Существенные затруднения вызывает вычисление интегралов (9.49), определяющих элементы матрицы СЛАУ (9.48).

Интеграл здесь поверхностный, т. е. двойной, и численное ин­тегрирование требует больших затрат времени ЭВМ. Выходом из положения является аналитическое вычисление одного из интег­ралов. Для этого можно воспользоваться тем, что в направлении, перпендикулярном оси

(см. рис. 9.7), каждая из азимутальных гармоник рассеянного поля имеет синусоидальную зависимость. Формально удобно вести это интегрирование по декартовой координате
в пределах от
до
. Зависимость поля будет синусоидальной только на окружности с центром, сов­падающим с диском1. Отличие этой окружности от меридиональной линии зеркала учтем только в фазе. Поправочный множитель, как показывает геометрический расчет, имеет вид
.

Зависимость поля каждой гармоники от

на зеркале может быть представлена только в числах, поэтому интеграл по
в пределах -
берется численно. Таким путем приходим к интегралу

(9.67)

где

— гиперсфероидальные функции, которые берутся в приближении гауссова пучка, т. е. в виде (9.55) и (9.57).

Формула (9.67) учитывает векторный характер поля. Все рас­четы ведутся в предположении, что основная поляризация в ре­зонаторе

и, следовательно,
. В рассеянном поле при исполь­зовании метода Галеркина надо брать ту же поляризацию. Она в координатах вращения, связанных с диском, представляет собой
. Интеграл по
, как уже говорилось, можно взять аналитичес­ки. Не останавливаясь на подробностях, их можно найти в [72], заметим, что этот интеграл можно свести к неполной гамма-функ­ции. Для вычисления последней имеются быстро сходящиеся ря­ды. Нахождение одномерного интеграла по
численным методом труда не представляет.