Смекни!
smekni.com

Задача обработки решеток (стр. 4 из 9)

1.4.1 Метод Писаренко для решеток датчиков

Основой метода Писаренко является однозначное разложение /рис.6/ корреляционного вектора на сумму масштабированного вектора корреляции шума , во внутренней части Е, и остаток на границе Е

(4.1)

Допущение о том, что находится в подразумевает, что такое разложение произвольного вектора существует и единственно. Рассмотрим однопараметрическое семейство корреляционных векторов

(4.2)

Для достаточно положительного не должен быть продолжаемым, а для достаточно отрицательного должен быть продолжимым, так как допущение, что подразумевает, что Е содержит окрестность . Выпуклость Е означает, что имеется некоторое наибольшее число , такое, что является продолжимым. Поскольку имеются произвольно близко к непродолжимые векторы, должен быть на границе Е. Кроме того, поскольку тогда и только тогда, когда продолжим, это разложение может 'быть использовало в качестве теста продолжимости.

Это однозначное разложение может быть сформулировано в виде основной задачи линейной оптимизации на всех положительных спектрах мощности. Отметим, что имеет по крайней мере , одно положительное спектральное представление и, что из /4.1/ для следует

(4.3)

Утверждение того, что является наибольшим числом, так что остаток продолжаем, приводит к линейной задаче оптимизации

(4.4з)

так что

(4.45)

Максимум равен и он достигается .

Поскольку продолжаемо, оно соответствует некоторой положительной мере . Следовательно /4.1/ принимает вид

(4.5)

Если , то является положительной мерой, которая согласует корреляционные измерения и которая имеет наиболее возможную шумовую компоненту.

Некоторая дополнительная информация относительно остатка и его спектрального представления может быть получена. находится на границе Е; следовательно, он дает нулевое внутреннее произведение с некоторым ненулевым положительным полиномом

(4.6)

Из этого следует, что основа должна быть на нулевом множестве . Или более точно, основа любого спектрального представления должна быть на пересечении нулевых множеств всех положительных полиномов, которые образуют нулевое внутреннее произведение с . Это предполагает окончательный шаг в выводе метода Писаренко; а именно, объединение остатка с импульсным спектром. ^ .

Тот факт, что целевой функционал основной задачи оптимизации не является строго выпуклым, допускает, что решение не может в общем случае быть единственным. Решение основной задачи оптимизации всегда единственно тогда и только тогда, когда корреляционный вектор на границе Е имеет единственное спектральное представление. В случае временной последовательности каждый такой имеет единственное спектральное представление, как сумма М или меньшего числа импульсов[5].

Пример 4.1: Случай временной последовательности, . Как и в примере 3.1, каждый положительный полином может быть факторизован в виде для некоторого тригонометрического полинома М-той, степени и следовательно могут быть равными нуля не более, чем в М точках. Спектр , следовательно, должен быть суммой импульсов в этих точках. Кроме того, поскольку возможно построить положительный полином, который равен нулю в произвольно выбранных точках и нигде больше, то отсюда следует, что имеет единственное спектральное представление в виде суммы импульсов в общих нулях всех положительных полиномов так что .

В более широком смысле, теорема продолжимости совместно с теоремой Каратеодори [16] показывает, что имеется по крайней мере одно спектральное представление в виде суммы не более чем 2М импульсов.

Теорема представления: Если , то существует и , так что

(4.7)

Доказательство теоремы представления можно найти в Приложении В. Это представление и, таким образом, решение основной задачи оптимизации могут быть не единственными. Дальнейшее обсуждение этой проблемы единственности можно найти в Приложений С.

Если и местоположения импульсов в единственном решении могут быть определены для данного , то амплитуды импульсов могут быть вычислены просто путем решения набора линейных уравнений. А сейчас мы получим двойственную задачу оптимизации, которая дает и , так что . Тогда, если имеет единственное спектральное представление, местоположения импульсов могут быть определены по нулям . Из теоремы продолжимости следует

(4.8)

Так как и , то отсюда следует, что и для всех . Кроме того, так как для некоторого , то отсюда следует, что

(4.9а)

на множестве

(4.9b)

и минимум достигается при . Решение этой двойственной задачи может не быть единственным даже в случае временной последовательности, когда она сводится к задаче собственного вектора, полученной Писаренко, и приводит к интерпретации метода Писаренко в виде определения сглаживающего фильтра с ограничениями по методу наименьших квадратов.

Пример 4.2 : Случай временной последовательности, . Как в примере /3.1/

.

Кроме того, если соответствует белому шуму единичной мощности,

.

Таким образом, двойственная задача оптимизации сводится к нахождению собственного вектора теплицевой матрицы, связанного с , соответствующего наименьшему собственному значению. Если имеется несколько таких собственных векторов, импульсы располагаются в общих нулях соответствующих полиномов. Любой нормированный собственный вектор, соответствующий минимальному собственному значению, дает коэффициенты сглаживающего фильтра, сумма квадратов величин которых ограничена единицей, что дает наименьшую выходную мощность при наличии входного процесса, корреляции которого описываются [17].

1.4.2 Вычисление оценки Писаренко

При разработке алгоритмов вычисления оценки Писаренко можно столкнуться с дискретной спектральной основой

Для такой основы основная задача /4.4/ может быть переписана в виде линейное программы стандартного вида

(4.11з)

так что для

(4.11b)

с N переменными и 2М ограничениями. Минимум равен и достигается для . Основная теорема линейного программирования 18 эквивалентна теореме представления в этом случае. При условии, что для этой линейной программы существует решение, как показано в предыдущем разделе, основная теорема гарантирует решение, в котором не более, чем 2М из не равны нулю, так называемое, базовое решение.

Двойственная линейная программа [l5]

(4.12з)

так что для

(4.12b)

эквивалентная двойственной задаче /4.9/ для дискретной спектральной основы, где ограничение

(4.13)

было использовано для исключения и где . Её минимум равен и достигается при .

Основная задача может быть решена при использовании симплекс-метода [18]. Применение симплекс-метода к основной задаче приводит в результате к существенно тому же результату /вычислительному алгоритму/, что и применение, /одинарного/ метода замены к двойственной задаче [19]. Применив соответствующий метод для избежания зацикливания [20], может быть получен алгоритм, который гарантирует сходимость к оптимальному решению за конечное число шагов, хотя его воплощения обычно были медленными .

Задача чебышевской аппроксимации связана с вычислением оценки Писаренко; она может быть сформулирована, как минимизация линейного функционала на выпуклом пространстве, определенном ограничениями типа линейных неравенств [l6]. Она также решалась с использованием симплекс-метода /одинарная замена/. Однако для частной задачи чебышевской аппроксимации непрерывных функций полиномами с одной переменной существует вычислительный метод, который значительно быстрее симплекс-метода, это метод многократной замены Ремеза. Хотя были сделаны попытки распространить этот метод на более общие задачи [21], появившиеся в результате алгоритмы не достаточно хорошо понятны; в частности, не доказана их сходимость.

И наконец, задачи недискретной оптимизации, включенные в вычисление оценки Писаренко, /4.4/ к /4.9/, являются видом, известным, как полубесконечные программы. Как теоретические, так и вычислительные аспекты таких программ рассматриваются в сборнике статей, изданных Геттичем [22].

Резюме

Эта статья связана с тем, что вероятно является наиболее простой и интересной задачей в обработке антенных решеток; оценкой спектра мощности с известной основой при условии, что даны некоторые выборки его корреляционной функции. Хотя и простая, эта задача сохраняет несколько черт, которые являются общими для многих задач обработки решеток: многомерные спектры, корреляционные выборки с неравномерными отчетами и произвольные спектральные основы.

Исследование спектральных оценок, согласованных с корреляцией привели к задаче продолжимости. Были даны две характеристики продолжаемости ста задача, для случая временных последовательностей, известна как задача тригонометрических моментов и ее решение включает рассмотрение положительной определенности корреляционных выборок. Положительная определенность может поэтому рассматриваться как специальный случай продолжимости.

Базируясь на теоретической основе, разработанной при решении задачи продолжаемости, метод Писаренко был распространен со случая временных последовательностей на задачу обработки решетки. Было показано, что метод Писаренко тесно .связан с задачек продолжимости. Было показано, что вычисление оценки Писаренко включает решение линейной задачи оптимизации. Было показало, что решение этой задачи не является единственным в общем случае, хотя оно единственно для случая временной последовательности, где задача линейном оптимизации сводится к задача собственных значений.