= (5.1)
де fн = 1/(2T) – частота Найквіста;
a – коефіцієнт закруглення спектра (0 £ a £ 1).
Оскільки ФНЧ збуджується d-функцією, то амплітудний спектр імпульсу A(t) описується співвідношенням (5.1). Тому ширина спектра імпульсу A(t) дорівнює (1 + a)/(2T). Спектр імпульсу aiA(t)
cos2pf0t – це спектр БМ сигналу, тобто дві бокові смуги частот навколо частоти f0. Ширина спектра цього радіоімпульсу (1 + a)/T. Радіоімпульси aiA(t) cos2pf0t і biA(t) sin2pf0t мають одинакові за формою амплітудні спектри. Тому ширина спектра елементарних сигналів si(t) і модульованого сигналу s(t) (це вірно за умови, що елементарні сигнали на окремих тактових інтервалах незалежні)Fs = (1 + a)/T. (5.2)
Смуга пропускання каналу зв’язку визначається смугою частот модульованого сигналу
Fк= (1 + a)/T. (5.3)
У каналі зв’язку діє адитивний білий гауссовий шум n(t) зі спектральною густиною потужності N0/2, –¥ < f < ¥.
У демодуляторі сигнал з каналу зв’язку
ai
A(t) cos2pf0t + bi A(t) sin2pf0t + n(t)поступає на два підканали. В підканалах включені синхронні детектори, де вхідний сигнал помножується на опорні коливання
cos2pf0t та sin2pf0t. Слід врахувати, щоcos22pf0t = 0,5 + 0,5 cos2p2f0t, sin22pf0t = 0,5 – 0,5 cos2p2f0t, cos2pf0t×sin2pf0t = 0,5 sin2p2f0t.
Після помножувачів включені ФНЧ, які пропускають низькочастотні складові та ослаблюють складові з частотами біля 2f0. Тому на рис. 3 в на виходах помножувачів показані лише ті складові, які пройдуть через ФНЧ: aiA(t) + Nc(t) та biA(t) + Ns(t), де Nc(t) та Ns(t) – обвідні косинусної та синусної складових шуму на вході демодулятора.
Основне призначення ФНЧ демодулятора – забезпечити максимальне перевищення корисного сигналу над шумом у відліковий момент часу. Виходячи з цієї умови, приходимо до висновку, що ФНЧ повинен бути узгодженим з сигналом A(t) – його АЧХ повинна співпадати з амплітудним спектром A(t). Оскільки амплітудний спектр A(t) описується функцією
– співвідношення (5.1), то і АЧХ ФНЧ демодулятора повинна описуватись залежністю . Після проходження імпульсу A(t) через ФНЧ отримаємо імпульс P(t) зі спектром Найквіста:N(f) =
(5.4)Функцію P(t) можна отримати як зворотне перетворення Фур’є від N(f)
P(t) =
. (5.5)Ключі (Kл) на рис. 3в беруть відліки в момент максимального значення імпульсів P(t) в підканалах демодулятора. Взяття відліків повторюється через тактовий інтервал Т. Для того, щоб не було міжсимвольної інтерференції, імпульси на виходах ФНЧ демодулятора повинні задовольняти умові відліковості. Завдяки тому, що в цій точці схеми має місце спектр Найквіста, задовольняється умова відліковості.
Після ключів в підканалах демодулятора мають місце оцінки координат переданого сигналу
= ai+ xc та = bi + xs, де xc та xs – значення завад в момент взяття відліків. Вирішуючий пристрій повинен визначити, якому з М можливих сигналів слід віднести координати ( , ). Після винесення рішення про номер сигналу декодер маніпуляційного коду видає n біт, що відповідають цьому номеру у відповідності до табл. 2.Розділ 4 курсової роботи повинен містити розраховані графіки АЧХ ФНЧ H(f) =
та відгуку ФНЧ демодулятора P(t) з використанням числових масштабів на осях координат. Слід зробити висновки відносно відсутності міжсимвольної інтерференції. Необхідно порівняти ширину смуги модульованого сигналу Fs з шириною смуги неперервного сигналу Fmax, що передається, та зробити відповідний висновок.6 Аналіз проходження завади через блоки демодулятора
До входу демодулятора поступає завада n(t) – адитивний білий гауссовий шум із спектральною густиною потужності (СГП) N0/2, –¥ < f <¥. Дію помножувача на заваду можна визначити, враховуючи властивість перетворення Фур’є: помноження на гармонічне коливання частоти f0 породжує дві складові, спектри яких зсунуті на +f0 i –f0 відносно спектру вхідного сигналу. У цьому разі СГП кожної із двох складових отримує множник ¼. Якщо гармонічне коливання має амплітуду
, то множник дорівнює ¼×( )2 = ½. Кожна із складових також є білим шумом, а самі складові незалежні на будь-якій з частот. Тому СГП їх суми удвічі більша за СГП кожної з них, і, таким чином, на виходах кожного з помножувачів має місце білий шум з СГП N0/2, –¥ < f <¥.Потужність шуму на виході ФНЧ легко визначити, якщо відома його шумова смуга Fш. АЧХ ФНЧ демодулятора визначається співвідношенням (5.1). Максимальне значення АЧХ Нmax дорівнює
і (6.1)З виходу ФНЧ береться відлік завади і маємо x – випадкову величину з гауссовим розподілом ймовірності. Її дисперсія (потужність) дорівнює дисперсії завади на виході ФНЧ
(6.2)Отже, на основі аналізу проходження сигналу і завади через блоки демодулятора на вході вирішуючого пристрою маємо
та де аі, bi – числа, що описують переданий сигнал; xс, xs – незалежні відліки завади в підканалах демодулятора з середньоквадратичним відхиленням (СКВ) .Алгоритм роботи вирішуючого пристрою побудований на такому підході. Вся площина, на якій нанесене сигнальне сузір’я, розбивається на М областей, що не пересікаються. Межами областей повинні бути сукупності точок, що знаходяться на рівних відстанях від найближчих точок – це мінімізує ймовірність помилки при винесенні рішення про номер переданого сигналу.
Знання сигнального сузір’я та СКВ завади достатньо для розрахунку ймовірності помилки сигналу. На рис. 2 у кожному сузір’ї позначений сигнал s0. Для сигналів ФМ-4,
АФМ-8 та КАМ-16 помилка сигналу буде мати місце, якщо хоча б одна з координат
(6.3)
де m – кількість помилкових переходів: для ФМ-4 та АФМ-8 m = 2, для КАМ-16 m = 4;
Fx(·) – функція розподілу ймовірності випадкової величини x;