На втором этапе измеряют значение Ex(Ux). Для этого переключатель переводится в положение 2, и изменением сопротивления потенциометра R вновь добиваются нулевого показания И. При Iр = const этому соответствует Ex (Ux) = IpR, т. е. искомое значение Ex(U^}^.R и может быть отсчитано по шкале R.
Таким образом, метрологические характеристики измерительных потенциометров постоянного тока определяются параметрами НЭ, образцовых резисторов, индикатора и источника Еу. В качестве НЭ применяются насыщенные и ненасыщенные обратимые гальванические элементы, положительный электрод которых образуется ртутью, а отрицательный — амальгамой кадмия. Классы точности НЭ регламентируются ГОСТ 1954—82 в пределах 0,0002...0,02 и определяют класс точности потенциометра в целом. Потенциометр R выполняется по специальной схеме, обеспечивающей постоянство /р при изменении R и необходимое число знаков (декад) при отсчете Ex(Ux). Этим требованиям удовлетворяют схемы с замещающими и шунтирующими декадами.
Измерительные потенциометры могут использоваться и для измерения переменных напряжений. Однако компенсирующее напряжение необходимо в этом случае регулировать не только по модулю, но и по фазе. Поэтому такие потенциометры имеют более сложную схему, чем потенциометры постоянного тока, а по точности значительно уступают им из-за отсутствия на переменном токе образцовой меры, аналогичной по своим характеристикам НЭ. В практике электрорадиоизмерений они полностью вытеснены электронными компенсационными вольтметрами.
В компенсационных вольтметрах измеряемое напряжение (постоянное, переменное, импульсное) сравнивается с постоянным компенсирующим напряжением, которое в свою очередь точно измеряется вольтметром постоянного тока и является мерой Ux. Типовая структурная схема такого вольтметра приведена на рис. 3.17.
Как видно из рис. 3.17, основу вольтметра составляет компенсационный ИП, состоящий из измерительного диода V с нагрузкой R, регулируемого источника постоянного компенсирующего напряжения -Ек, усилителя и индикатора с двумя устойчивыми состояниями. При отсутствии Ux индикатор, реализуемый с помощью
функциональных узлов находится в первом устойчивом состоянии, а при некотором пороговом значении переходит во второе состояние. Процесс измерения Ux как раз и сводится к постепенному увеличению Ек до тех пор, пока индикатор не перейдет во второе устойчивое состояние. Значение Ек, соответствующее моменту перехода, измеряется вольтметром постоянного тока и является мерой Ux.
Рис. 3.17. Структурная схема компенсационного вольтметра.
В сочетании с другими схемными решениями (применение индикатора с малым пороговым напряжением, лампового измерительного диода со стабильной характеристикой и др.) оказывается возможным проектировать высокоточные компенсационные вольтметры.
Недостаток рассмотренной схемы — необходимость установки Ей вручную. Поэтому в большинстве вольтметров схему ИП усложняют, обеспечивая автоматическую компенсацию Ux и Ек. Автокомпенсационные вольтметры являются прямопоказывающими приборами и более удобны в эксплуатации.
ОСНОВНЫЕ УЗЛЫ АНАЛОГОВЫХ ВОЛЬТМЕТРОВ
Рассмотрим схемные решения основных функциональных узлов, определяющих метрологические характеристики аналоговых вольтметров. Большинство этих узлов применяются и в других видах электронных измерительных приборов.
Входное устройство
Как уже указывалось выше, ВУ предназначено для расширения пределов измерения вольтметра. В простейшем случае оно представляет собой аттенюатор, выполненный по резистивной (рис. 3.18, а), емкостной (рис. 3.18, б) или комбинированной (рис. 3.18, в) схемам.
Наиболее простой и универсальной (для Uх= и Ux~) является схема, представленная на рис. 3.18, а, но на высоких частотах существенное влияние начинают оказывать паразитные емкости. Поэтому на высоких частотах переходят либо к емкостной схеме, либо к комбинированной, которая при R1C1 = R2C2 оказывается частотно-компенсированной (коэффициент деления k = R2/(R1 + Р2), как и для схемы, изображенной на рис. 3.18, а).
Выполнение остальных требований и прежде всего обеспечение высокого входного сопротивления и минимальной входной емкости вольтметра приводит в ряде случаев к усложнению структуры ВУ. Наиболее универсальным и часто применяемым в современных вольтметрах переменного тока является ВУ, структурная схема которого представлена на рис. 3.19.
Принципиальной особенностью данной схемы является изменение Uв с помощью низкоомного резистивного аттенюатора с постоянным входным и выходным импедансом. Это повышает точность измерения Ux~, но требует введения в структуру ВУ преобразователя импеданса (ПИ), обеспечивающего трансформацию высокого входного сопротивления вольтметра в малое входное сопротивление аттенюатора. В качестве ПИ наиболее часто используют повторитель напряжения на полевом транзисторе с глубокой отрицательной обратной связью. С помощью
Рис. 3.18. Схемы аттенюаторов вольтметров:
а—на резисторах; б — на конденсаторах; в — комбинированная.
Рис. 3.19. Структурная схема универсального входного устройства.
входного делителя напряжения (ВДН) предусматривается дополнительная возможность расширения пределов измерения вольтметра. ВДН представляет собой фиксированный делитель резистивно-емкостного типа (см. рис. 3.18, в)
На высоких частотах входное сопротивление вольтметра уменьшается, а входная емкость и индуктивности проводников образуют последовательный колебательный контур, который на резонансной частоте имеет практически нулевое сопротивление. Для нейтрализации этих эффектов ПИ конструктивно выполняется как выносной пробник с ВДН в виде насадки.
Усилители
Усилители постоянного тока, как видно из структурных схем (см. рис. 3.13 и 3.14, о), обеспечивают получение мощности, достаточной для приведения в действие ИМ магнитоэлектрического прибора, и согласование входного сопротивления ИУ с выходным сопротивлением ВУ или детектора. К УПТ предъявляются два основных требования: высокое постоянство коэффициента усиления и пренебрежимо малые флюктуации выходной величины при отсутствии Ux= (Дрейф нуля). Поэтому все практические схемы УПТ имеют глубокую отрицательную обратную связь (ООС), обеспечивающую стабильную работу их и нечувствительность к перегрузкам. Радикальными методами борьбы с дрейфом нуля являются его периодическая коррекция, а также преобразование Uх= в переменное напряжение с последующим усилением и выпрямлением этого напряжения.
Усилители переменного тока в соответствии со своим функциональным назначением (см. рис. 3.14, б) должны иметь высокую чувствительность, большое значение и высокую стабильность коэффициента усиления, малые нелинейные искажения и широкую полосу пропускания (за исключением УПЧ селективного вольтметра). Удовлетворить этим противоречивым требованиям могут только многокаскадные усилители с ООС и звеньями для коррекции частотной характеристики. В некоторых случаях применяются логарифмические усилители для получения ^линейной шкалы в децибелах. Если ставится задача минимизации аддитивной погрешности вольтметра, усилители могут быть двухканальными с усилением основного сигнала и сигнала, корректирующего аддитивную погрешность. Для расширения функциональных возможностей многие вольтметры имеют специальный выход усилителя и могут использоваться как широкополосные усилители. Более того, усилители могут выпускаться как самостоятельные измерительные приборы, образуя подгруппу У.
Детально усилители постоянного и переменного тока рассматриваются в курсе «Усилительные устройства».
Детектор
Тип детектора определяет, как уже указывалось, принадлежность вольтметров переменного тока к вольтметрам амплитудного, среднеквадратического или средневыпрямленного напряжения. В соответствии с этим сами детекторы классифицируются следующим образом: по параметру Ux~^ которому соответствует ток или напряжение в выходной цепи детектора: пиковый детектор, детекторы среднеквадратического и средневыпрямленного значений напряжения; по схеме входа: детекторы с открытым и закрытым входом по постоянному напряжению;
по характеристике детектирования: линейные и квадратичные детекторы.
Рис. 3.20. Схемы пикового детектора:
А — с открытым входом; Б — с закрытым входом.
Пиковый детектор — это детектор, выходное напряжение которого непосредственно соответствует t/max или <7min(Ов или Us). Пиковый детектор относится к линейным и может иметь открытый (рис. 3.20, а) или закрытый (рис. 3.20, б) вход по постоянному напряжению.
Принцип работы пиковых детекторов специфичен и заключается в заряде конденсатора С через диод V до максимального (пикового) значения Ux~, которое затем запоминается, если постоянная времени разряда С (через R) значительно превышает постоянную времени заряда. Полярность включения V определяет соответствие Ux=, либо Umax(Uв), либо Umin(Uн), а возможные пульсации Uх= сглаживаются цепочкой Рф, Сф. Если детектор имеет открытый вход, Uх= определяется суммой U и Uв(Uн), т. е. соответствует Umax (Umin) При закрытом входе Uх= соответствует Uв(Uн). Если же Ux~ не содержит постоянной составляющей, то схемы, изображенные на рис. 3.20, а, б, идентичны, а Uх= соответствует Um. В некоторых случаях применяют двухполупериодные пиковые детекторы с удвоением напряжения, позволяющие прямо измерять значение размаха напряжения.