Поскольку при работе таймер использует внутреннюю шину синхронизации, диспетчер сигнала синхронизации должен быть включен одновременно с таймером, т. к. сам СОР таймер не может определить наличие/отсутствие сигнала синхронизации. Управление таймером и диспетчером синхронизации осуществляется с помощью регистров сброса (COPRST 1DH) и управления (COPCR 1EH).
Регистр сброса (COPRST) расположен по адресу 1DН.
Регистр сброса
Бит | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Установка после RESET | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Чтобы осуществить сброс таймера, необходимо проделать следующие операции:
-записать 55Н в COPRST
-записать ААН в COPRST
Эти операции должны производиться в описанном порядке, но не обязательно сразу друг за другом. Время между программными сбросами не должно превышать время переполнения таймера, в противном случае система будет приведена в исходное состояние. Чтение COPRST не оказывает на него влияния.
Регистр управления (COPCR) расположен по адресу 1E и содержит биты управления СОР таймером и диспетчером синхронизации (см. ниже).
Регистр управления
Название | 0 | 0 | 0 | COPF | CME | COPE | CM1 | CM0 |
Установка после RESET | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
COPF-флаг нормального функционирования
при COPF=1- произошел сброс по следящему таймеру или диспетчеру синхронизации.
при COPF=0- сброс не произошел.
Чтение COPCR сбрасывает COPF.
CME-бит доступа к диспетчеру синхронизации.
при CME=1- диспетчер синхронизации разблокирован.
при CME=0- диспетчер блокирован.
Ьит CME может быть прочитан и записан в любой момент.
COPE-бит управления СОР таймером.
при COPE=1- COP-система разрешена.
при COPE=0- COP-система блокирована.
COPE может быть прочитан в любой момент, но записан только один раз.
CM1, СМ0-биты, задающие период переполнения СОР таймера (см. таблицу 3-1). Эти биты могут быть прочитаны и установлены в "1" в любой момент, но сброшены лишь при начальной установке ОЭВМ.
Таблица 3-1 Период переполнения таймера.
CM1 | CM0 | Fp/2E15 деленная на | Fг=4.0МГцFр=2.0МГц | Fг=3.5795МГцFp=1.7897МГц | Fг=2.0МГцFр=1.0МГц | Fг=1.0МГцFр=0.5МГц |
0 | 0 | 1 | 16.38мс | 18.31мс | 32.77мс | 65.54мс |
0 | 1 | 4 | 65.54мс | 73.24мс | 131.07мс | 262.14мс |
1 | 0 | 16 | 262.14мс | 292.95мс | 524.29мс | 1.048с |
1 | 1 | 64 | 1.048с | 1.172с | 2.097с | 4.194с |
RESET по отсутствию сигнала синхронизации происходит при условии, что бит CME в регистре COPCR установлен. В этом случае диспетчер синхронизации контролирует наличие/отсутствие сигнала синхронизации в течение определенного промежутка времени. Этот период колеблется от 5 до 100 мс и зависит от параметров работы процессора. Например, при рабочей частоте синхронизации 200 КГц и менее, диспетчер синхронизации использоваться не может.
Если определено отсутствие синхронизации, либо ее низкая частота, то происходит сброс, сигнал которого поступает на внешние устройства через двунаправленный вывод RESET/ в течение четырех циклов.
3.2 Режимы с пониженным энергопотреблением.
ОЭВМ предусматривает 3 режима с пониженным энергопотреблением, которые могут использоваться в схемах, питающихся от батарей и в автомобильной технике. Команды STOP и WAIT оказывают влияние на системы SPI, SCI и таймера.
Режим STOP. В этом режиме ОЭВМ потребляет минимально возможную энергию, поскольку внутренний тактовый генератор выключен, вызывая тем самым прекращение всех внутренних процессов. В режиме останова бит I сбрасывается, разрешая все внешние прерывания. Все остальные регистры и память остаются без изменения. Без изменения остаются и линии ввода-вывода. Это состояние сохраняется до тех пор, пока не появиться сигнал IRQ либо RESET. В этот момент внутренний генератор возобновит работу. Вход в режим осуществляется программно командой STOP. Последовательный интерфейс связи в этот момент прекращает работу. Если в этот момент происходила передача информации, то она прекращается, и возобновляется при подаче сигнала низкого уровня на вывод IRQ\ микросхемы. Если же интерфейс принимал информацию, то данные теряются. Поэтому передатчик должен находиться в состоянии ожидания в ходе режима STOP. Последовательный периферийный интерфейс в ходе режима STOP продолжает прием и передачу информации если он был конфигурирован как ведомый. Единственное отличие состоит в том, что ни один флаг не будет установлен либо сброшен до тех пор, пока сигнал IRQ\ не поступит на внешний вывод. Однако при работе в режиме STOP необходимо соблюдать осторожность, поскольку схема защиты (биты WCOL, MODF и др.) не работает. Если же интерфейс был конфигурирован как ведущий, то его работа прекращается и может быть продолжена только после сигнала IRQ\. Таймер в ходе режима STOP сохраняет в счетчике последнее значение. Если же на выводе ТСАР появляется сигнал, то схема входной фиксации срабатывает, и после окончания режима STOP устанавливается соответствующий флаг (во время режима никаких действий не производится).
Команда WAIT также помещает микропроцессор в режим с пониженным потреблением энергии (режим WAIT), но с несколько большим потреблением, чем при STOP-режиме. При режиме WAIT все процессы в блоке центрального процессора остановлены, но внутренний генератор, таймер и интерфейсы (связи и периферийный) в том случае, если они активизированы, работают. Прерывание от любого из этих устройств вызовет выход из режима. В ходе режима WAIT бит I сброшен, допуская внешние прерывания. Все остальные регистры-память и линии ввода-вывода остаются без изменения. то состояние сохраняется до тех пор, пока не возникнет прерывание либо RESET.
Последним из режимов с пониженным энергопотреблением является режим сохранения данных. Содержимое ОЗУ и регистров ЦП сохраняется при напряжении питания 2.0В. При таком питающем напряжении системы ОЭВМ уже не могут гарантированно работать. В ходе режима пониженного энергопотребления ОЭВМ должна находиться в состоянии RESET.
На приведенной на рис. 2-15 блок-схеме можно наглядно проследить процесс входа в режимы STOP и WAIT и условия выхода из них.
Рис. 2-15 Блок-схема режимов STOP и WAIT.
Поскольку МС68НС705С8 является КМОП устройством, неиспользуемые входные выводы должны быть защищены от наводок и перенапряжений. Наиболее предпочтительным методом защиты является включение резистора между каждым неиспользуемым выводом и напряжением питания.
Цоколевка и наименование выводов для различных типов корпусов представлены на рисунках п1а и п1б.
Рис.п1а. Цоколевка и наименование выводов для DIP корпуса.
Рис.п1б. Цоколевка и наименование выводов для PLCC корпуса.
Рассмотрим подробнее назначение выводов ОЭВМ.
Выводы Vdd и Vss используются для подключения источника питания. На Vdd подается напряжение питания +5В, а вывод Vss соединяется с общей шиной.
Вывод Vpp используется при программировании ПЗУ или ППЗУ. Напряжение программирования (+14.75В) подается на этот вывод, когда программируется ППЗУ. В других случаях на этот вывод подается напряжение питания.
ПРЕДУПРЕЖДЕНИЕ: не допускается соединять Vpp c Vss. Это приведет к повреждению ОЭВМ.
Вход внешнего запроса на прерывание IRQ функционирует в одном из двух режимов. В первом режиме входная логика срабатывает по отрицательному фронту, во втором-по отрицательному фронту и низкому уровню . Во втором случае как отрицательный, так и низкий уровень, подаваемый на IRQ, будут приводить к прерыванию. При возникновении на входе IRQ отрицательного фронта, возникает запрос прерывания. Когда ОЭВМ заканчивает выполнение текущей команды, проверяется наличие запроса прерывания. Если запрос обнаружен и бит маски прерывания (1-ый бит в регистре флагов) сброшен в ноль, то ОЭВМ переходит на процедуру обработки прерывания. Если выбран режим срабатывания входа IRQ по уровню, то этот вывод необходимо соединить через резистор с напряжением питания +5В для обеспечения возможности операции "монтажное или".
Вывод RESET является двунаправленным, с низким активным уровнем. При подаче на вывод RESET логического нуля, происходит инициализация ОЭВМ. В случае сбоя, определяемого системами СОР-таймера или диспетчера частоты синхронизации, на выходе RESET устанавливается логический ноль для инициализации внешних устройств, подключенных к ОЭВМ.
Выводы OSC1 и OSC2 используются для подачи тактовой частоты для ОЭВМ. Тактовые сигналы могут формироваться с помощью кварцевого резонатора, или подаваться от внешнего генератора импульсов. Внутренняя тактовая частота получается делением частоты генератора на 2. Схема, показанная на рисунке п2а, рекомендуется в случае использования кварцевого резонатора. Внутренний генератор разработан для работы с кварцевым резонатором или керамическим резонатором с частотой 4MHz. Кварцевый резонатор и дополнительные элементы этой схемы должны быть установлены как можно ближе к соответствующим выводам ОЭВМ для того, чтобы минимизировать искажения сигнала и время запуска генератора. Схема на рисунке п2б рекомендуется, когда используется внешний генератор тактовых импульсов. Тактовые импульсы подаются на вход OSC1, а вывод OSC2 остается незадействованным.