Хотя построение последовательности курса обучения можно рассматривать как старейшую технологию ИОС (она была почти во всех первых ИОС), около 20 лет она была Золушкой среди остальных технологий. Ей уделялось очень мало внимания. Основные исследования ИОС были сконцентрированы вокруг технологий поддержки в решении задач (они будут проанализированы ниже). Поддержка в решении задач рассматривалась как главная обязанность ИОС, в то время как доставка и построение последовательностей образовательного материала предполагались выполняемыми вне системы (обычно учителем-человеком). Конечно, почти нет ИОС, содержащих образовательный материал внутри себя (в отличии от набора задач). Положение с Сетевыми АИОС очень отличается. В среде Сетевого образования целые пласты гранита науки (обычно выстроенного в виде гиперпространства) являются одной из главных привлекательных черт образовательной системы. Здесь (в связи с проблемой "потери в гиперпространстве") технология последовательности курса обучения становится очень важной для указания пути обучаемому в гиперпространстве доступной информации. Также эта технология может быть легко и естественно реализована в Сети: все знания могут быть расположены на сервере и все построения последовательностей могут быть сделаны CGI-скриптом. Не удивительно, что это не только старейшая, но также и наиболее популярная технология Сетевых АИОС.
2.1.2 Поддержка в решении задач
Как это упоминалось выше, в течении многих лет поддержка в решении задач рассматривалась как главная обязанность систем ИОС и главное значение технологии ИОС. Мы установили три технологии поддержки в решении задач: интеллектуальный анализ решений обучаемого, интерактивная поддержка в решении задач и поддержка в решении задач на примерах. Все эти технологии могут помочь студенту в процессе решения образовательной задачи, но делают они это разными способами.
Интеллектуальный анализ решений обучаемого имеет дело с конечными ответами обучаемого на образовательные задачи (как были получены эти ответы неважно). Чтобы считаться интеллектуальным, анализатор решений должен решить, верно решение или нет, найти, что конкретно неправильно или неполно, и, возможно, определить, какие недостающие или неправильные знания могут быть ответственны за ошибку (последнее действие относится к определению знаний). Интеллектуальные анализаторы могут предоставлять обучаемым далеко идущую обратную связь и обновлять модель обучаемого. Классическим примером является PROUST [Johnson, 1986 #681]. Как можно увидеть в таблицах 1 и 3, число сетевых АИОС реализующих интеллектуальный анализ решений обучаемого невелико.
Интерактивная поддержка в решении задач более современная и более мощная технология. Вместо ожидания конечного решения эта технология предоставляет обучаемому интеллектуальную помощь на каждом шаге решения задачи. Уровень помощи может быть разным: от оповещения о неправильно сделанном шаге до выдачи совета и выполнения следующего шага за студента. Системы (часто называемые интерактивными тренажерами), в которых реализуется эта технология, могут наблюдать за действиями студента, понимать их и использовать их понимание для предоставления помощи и обновления модели обучаемого. Классический пример - LISP-TUTOR. Эта технология также представлена в Сетевых АИОС (Таблицы 1 и 3).
Технология поддержки в решении задач на примерах самая новая. Эта технология помогает обучаемым решать новые задачи, не выделяя их ошибки, а предлагая примеры успешного решения схожих задач из их более раннего опыта (это могут быть примеры, объясненные им, или задачи решенные ими ранее). Пример: ELM-PE. В Сети эта технология реализована в ELM-ART и ELM-ART-II.
В области традиционных ИОС технология поддержки в решении задач на примерах абсолютно преобладает. Интерактивная поддержка в решении задач является предельной целью почти всех ИОС, в то время как интеллектуальный анализ решений обучаемого часто считается несовершенным, а поддержка в решении задач на примерах слишком редка, чтобы рассматривать ее как соперника. Но опять же, в Сети ситуация меняется: и интеллектуальный анализ решений обучаемого, и поддержка в решении задач на примерах кажутся в Сети очень естественными и полезными. Обе технологии пассивны (работают по запросу обучаемого) и соответственно могут быть относительно легко реализованы в сети при помощи интерфейса CGI. Более того, старые однопользовательские программы АИОС, использующие эти технологии, могут быть относительно легко размещены в сети реализацией CGI-шлюзов к ним. Неудивительно, что эти технологии были среди первых реализованных для Сети. Важной выгодой применения этих двух технологий в сети является их низкая интерактивность: им обоим обычно требуется только одно взаимодействие между браузером и сервером для цикла решения задачи. А это очень важно в случае медленной Интернет-связи. Эти технологии могут обеспечивать интеллектуальную поддержку в случае, когда трудно использовать более интерактивные технологии. В настоящее время эти технологии преобладают в Сетевой среде над более мощной, но жадной до взаимодействия интерактивной поддержкой в решении задач.
Технология интерактивной поддержки в решении задач последней из технологий ИОС переселилась в Сеть. Проблема в том, что подход к реализации Сетевых ИОС "наспех" (разработка интерфейсов CGI к старым однопользовательским ИОС), использовавшийся в первых системах, не проявил себя должным образом для этой технологии. Это можно продемонстрировать на примере системы PAT-Online, которая вероятно была первой попыткой реализации интерактивной поддержки в решении задач в Сети. Эта система использует основанный на разновидности CGI-AppleScript интерфейс для однопользовательской системы Репетитор по практической алгебре (PracticalAlgebraTutor - PAT). Поскольку интерфейс CGI пассивный, Сетевая версия должна предоставлять обучаемому кнопку "подчинения" для получения обратной связи с системой. Естественно это также добавляло еще одну особенность, которая была важна для обучаемых с медленным Интернет-соединением: возможность требования обратной связи после выполнения нескольких шагов решения задачи. В результате PAT-Online переместилась в категорию интеллектуальных анализаторов задач, точнее в подкатегорию анализаторов, способных анализировать неполные решения (ELM-ART также принадлежит этой подкатегории). Интеллектуальные анализаторы этой подкатегории можно расположить между традиционными анализаторами и интерактивными репетиторами (в Таблицах 1 и 3 они обозначены ключевым словом "частичная", однако, их нельзя рассматривать как настоящие интерактивные тренажеры).
Настоящий интерактивный репетитор должен быть не только интерактивным, но и активным. Он не должен спать в промежутках от одного запроса к другому, а вместо этого он должен быть способен наблюдать, что делает обучаемый и немедленно реагировать на ошибки. Но это просто не может быть реализовано при помощи обычной интерактивности CGI на сервере и требует клиентской интерактивности основанной на Java. Технология Java развилась очень недавно. Два года назад в обзоре она называлась как перспективная платформа для Сетевых АИОС, но было упомянуто всего три Java системы. Сейчас Java обеспечивает надежное решение проблемы для Сетевых интерактивных репетиторов. Если быть более точным, то Java предлагает два различных решения. Одно состоит в том, что репетитор полностью реализован на Java. Это может быть как апплет, работающий в браузере, так и приложение Java. Другим решением является распространяемый клиент-серверный репетитор, в котором часть функций реализована на Java и работает на клиентской стороне, а другая часть работает на сервере. Части связаны через Интернет. Хотя чистое Java решение выглядит проще (всего лишь новый язык для создания АИОС), клиент-серверная архитектура предлагает более привлекательный выбор для развития Сетевых репетиторов. Это определенный выбор для размещения однопользовательских интерактивных репетиторов в Сети. D3-WWW-Trainer и AlgeBrain показывают, как заново использовать интеллектуальные функции предшествующих однопользовательских репетиторов, заменяя их на серверные приложения, и разрабатывая относительно слабых "безмозглых" Java клиентов, которые реализуют интерфейсные функции и связываются с интеллектуальным сервером. Недавно реализованные событийные репетиторы, такие как ADIS и ILESA, которые могут быть легко реализованы на чистой Java, в отличии от клиент-серверной архитектуры имеют такую выгоду как централизованное построение модели обучаемого. В конечном итоге накладные расходы клиент-серверного подхода (необходимость иметь распространяемую систему) не такие большие, с тех пор как Java естественным образом поддерживает несколько способов клиент-серверной взаимосвязи - HTTP/CGI, сокеты или RMI/CORBA. Мы думаем, что архитектура клиент-сервер станет очень популярной в будущие годы в качестве стандарта реализации Сетевых интерактивных репетиторов и пути реализации всех видов высоко интерактивных Сетевых АИОС. Мы уже видим примеры ее использования: в реализации интерфейса основанного на пере в WITS-II и одушевленного педагогического агента Винсента в TEMAI.
2.2 Технологии адаптивной гипермедиа в Сетевом обучении
Адаптивная гипермедиа – это относительно новая область исследований. Системы адаптивной гипермедиа применяют различные виды моделей пользователя для приспосабливания содержимого и ссылок страниц гипермедиа для него. Мы различаем две главные технологии в адаптивной гипермедиа: адаптивное представление и адаптивная поддержка в навигации. Образование всегда было одной из главных областей применения адаптивной гипермедиа. Некоторое количество однопользовательских (т.е. несетевых) адаптивных образовательных систем гипермедиа было создано между 1990 и 1996 годами. О первых Сетевых АИОС использующих адаптивную гипермедиа сообщалось в 1996 году. С тех пор Сеть стала основной платформой для развития образовательных систем адаптивной гипермедиа.