Смекни!
smekni.com

Что такое психология том 2 Годфруа Ж (стр. 72 из 86)

1) для числа попаданий 1-й ранг соответствует самой высокой, л 15-й-самой низкой результативности, тогда как для времени реакции 1-й ранг соответствует самому короткому времени, а 15-й-самому долгому;

2) данным ex aequo придается средний ранг.

Таким образом, как и в случае коэффициента г, получен положитель­ный, хотя и недостоверный, результат. Какой же из двух результатов правдоподобнее: г = —0,48 или rs = +0,24? Такой вопрос может встать лишь в том случае, если результаты достоверны.

Хотелось бы еще раз подчеркнуть, что сущность этих двух коэф­фициентов несколько различна. Отрицательный коэффициент г указы­вает на то, что эффективность чаще всего тем выше, чем время реакции меньше, тогда как при вычислении коэффициента г5 требовалось про­верить, всегда ли более быстрые испытуемые реагируют более точно, а более медленные - менее точно.

Поскольку в экспериментальной группе после воздействия был полу­чен коэффициент rst равный 0,24, подобная тенденция здесь, очевидно, не прослеживается. Попробуйте самостоятельно разобраться в данных для контрольной группы после воздействия, зная, что 2jd2 = 122,5:

гs = 1 —---------------= 1 —--------------- — 1 — ; достоверно ли?

F

Каков ваш вывод?..........................................

Итак, мы рассмотрели различные параметрические и непараметри­ческие статистические методы, используемые в психологии. Наш обзор

был весьма поверхностным, и главная задача его заключалась в том, чтобы читатель тюнял, что статистика не так страшна, как кажется, и требует в основном здравого смысла. Напоминаем, что данные «опыта», с которыми мы здесь имели дело,-вымышленные и не могут служить основанием для каких-либо выводов. Впрочем, подобный экс­перимент стоило бы действительно провести. Поскольку для этого опыта была выбрана сугубо классическая методика, такой же статисти­ческий анализ можно было бы использовать во множестве различных экспериментов. В любом случае нам кажется* что мы наметили какие-то главные направления, которые могут оказаться полезны тем, кто не знает, с чего начать статистический анализ полученных результатов.

Резюме

Существуют три главных раздела статистики: описательная ста­тистика, индуктивная статистика и корреляционный анализ,

I. Описательная статистика

1. Задачи описательной статистики - классификация данных, постро­ение распределения их частот, выявление центральных тенденций этого распределения и оценка разброса данных относительно средних.

2. Для классификации данных сначала располагают их в возрастаю­щем порядке. Далее их разбивают на классы по величине, интервалы между которыми определяются в зависимости от того, что именно иследователь хочет выявить в данном распределении,

3. К наиболее часто используемым параметрам, с помощью которых можно описать распределение, относятся, с одной стороны, такие величины, как мода, медиана и средняя арифметическая, а с другой-показатели, разброса, такие как варианса (дисперсия) и стандартное отклонение,

4. Мода соответствует значению, которое встречается чаще других или находится в середине класса,' обладающего наибольшей частотой.

Медиана соответствует значению центрального данного, которое может быть получено после того, как все данные будут расположены в возрастающем порядке.

Средняя арифметическая равна частному от деления суммы всех данных на их число.

Распределение считается нормальным, если кривая распределения имеет ко л околообразный вид, а все показатели центральной тенденции совпадают, что свидетельствует о симметричности распределения,

5. Диапазон распределения (размах вариаций) равен разности между наибольшим и наименьшим значениями результатов,

6. Среднее отклонение -это более точный показатель разброса, чем диапазон распределения. Для расчета среднего отклонения вычисляют среднюю разность между всеми значениями данных и средней арифме-

Статистики и оорапатка дачны

тической, или, упрощенно»

Среднее отклонение =

7, Еще один показатель разброса, вычисляемый из среднего откло­нения,-это варианса (дисперсия), равная среднему квадрату разностей между значениями всех данных и средней:

Варианса -

8. Наиболее употребительным показателем разброса служит стан-дартное отклонение, равное квадратному корню из вариансы» Таким образом, это квадратный корень из суммы квадратов всех отклонений от средней:

Стандартное отклонение =

V и V п —

9+ Важное свойство стандартного отклонения заключаете в том, что независимо от его абсолютной величины в нормальном распределении оно всегда соответствует одинаковому проценту данных, располага­ющихся по обе стороны от средней: 68% результатов располагаются в пределах одного стандартного отклонения в обе стороны от средней, 95% - в пределах двух стандартных отклонений и 99,7%-в пределах трех стандартных отклонений.

10. С помощью перечисленных выше показателей можно осущест­вить оценку различий между двумя или несколькими распределениями, позволяющую проверить, насколько эти различия могут быть экстра­полированы на популяцию, из которой взяты выборки. Для этого применяют методы индуктивной статистики.

-

IL Индуктивная статистика

1. Задача индуктивной статистики заключается в том, чтобы оце­нить значимость тех различий, которые могут быть между двумя распределениями, с целью выяснить, можно ли распространить найден­ную закономерность на всю популяцию, из которой были взяты выборки.

2. Для того чтобы определить, достоверны ли различия между распределениями, следует выдвинуть гипотезу, которую нужно будет затем проверить статистическими методами. Нулевой гипотезой на­зывают предположение, согласно которому различие между распре­делениями недостоверно, тогда как альтернативная гипотеза утверж­дает противоположное.

3. В том случае, если данных достаточно, если эти данные количест­венные и подчиняются нормальному распределению, для проверки гипотез используют параметрические критерии. Если же данных мало либо они

314 При.ш.жетн' К

являются порядковыми или качественными (см.дополнение Б.1), исполь­зуют непараметрические критерии.

4. Из параметрических критериев наиболее эффективен и чаще всего используется критерий"! Стьюдента. Этот критерий позволяет сравнить средние и стандартные отклонения для двух распределений. В случае если эти показатели принадлежат независимым выборкам, используют формулу

Для сопряженных выборок используют иную формулу:

5, Если необходимо сравнить три или большее число распределений, используют иной параметрический метод - дисперсионный анализ. При этом с помощью метода Шеффе можно выявить пары выборок, разли­чия между которыми достоверны либо недостоверны.

6. Критерий х2 (хи-квадрат) - это непараметрический критерий, по­зволяющий проверить, являются ли две переменные независимыми друг от друга, .По этому методу сравнивают, как распределяются эмпири­ческие частоты в зависимости от критериев для каждой переменной, с тем, как они распределились бы теоретически, если бы переменные были независимыми. Далее с помощью таблицы, в которую сводятся все частоты, вычисляют критерий х2. Для этого сначала находят разницу между каждой эмпирической (Э) и соответствующей теоретической (Т) частотой, а затем сумму этих разностей:

7. Критерий знаков (биномиальный тест)-еще один непараметри­ческий метод, позволяющий легко определить, оказала ли независимая переменная существенное влияние по сравнению с исходным уровнем (фоном). Для этого сначала подсчитывают число «ухудшений» (-) или число «улучшений» (+), а затем сравнивают одно из этих двух чисел с тем, что могло бы получиться в результате чистой случайности (1 шанс из 2, или л/2). Для этого применяют формулу

(Х±0.5)~

и обработки <Штых 315

8, Существуют и другие непараметрические тесты, которые прихо­дится использовать для проверки гипотез тогда, когда нельзя применить параметрические критерии, К этим методам, в частности, относится критерий рангов позволяющий определить, случайна или нет очеред­ность событий в той или иной последовательности, а также критерий V и критерии 7&bsol; Последние лва критерия используют в случае поряд­ковых переменных соответственно для независимых и зависимых выборок.

9. Какой бы критерий ни использовался, его вычисленное значение следует сравнить с табличным для уровня значимости 0,05 с учетом числа степеней свободы. Если при этом вычисленный „результат ока­жется выше, нулевая гипотеза может быть отвергнута и можно, следо­вательно, утверждать* что разница достоверна,