Смекни!
smekni.com

Что такое психология том 2 Годфруа Ж (стр. 68 из 86)

294

Приложение И

-t<7

После воздействия

Поскольку стандартное отклонение всегда соответствует одному и тому же проценту результатов, укладывающихся в его пределах вокруг средней, можно утверждать, что при любой форме кривой нормального распределения та доля ее площади, которая ограничена (с обеих сторон) стандартным отклонением, всегда одинакова и соответствует одной и той же доле всей популяции. Это можно проверить на тех наших выборках, для которых распределение близко к нормальному,-на дан­ных о фоне для контрольной и опытной групп.

Итак, ознакомившись с описательной статистикой, мы узнали» как можно представить графически и оценить количественно степень разбро­са данных в том или ином распределении. Тем самым мы смогли понять, чем различаются в нашем опыте распределения для контрольной группы до и после воздействия. Однако можно ли о чем-то судить по этой разнице-отражает ли она действительность или же это просто артефакт, связанный со слишком малым объемом выборки? Тот же вопрос (только еще острее) встает и в отношении экспериментальной группы, подверг­нутой воздействию независимой переменной. В этой группе стандартное отклонение для фона и после воздействия тоже различается примерно на 1 (3,14 и 4,04 соответственно). Однако здесь особенно велика разница между средними-15,2 и 11,3* На основании чего можно было бы утверждать, что эта разность средних действительно достоверна, т,е&bsol; достаточно велика, чтобы можно было с уверенностью объяснить ее влиянием независимой переменной, а не простой случайностью? В какой степени можно опираться на эти результаты и распространять их на всю популяцию, из которой взята выборка, т, е. утверждать, что потребление марихуаны и в самом деле обычно ведет к нарушению глазодвигатель­ной координации? -

На все эти вопросы и пытается дать ответ индуктивная статистика.

u u oopitwowKu (кишы.&bsol;

Индуктивная статистика

Задачи индуктивной статистики заключаются в том, чтобы опреде­лять, насколько вероятно, что две выборки принадлежат к одной популяции.

Давайте наложим друг на друга,, с одной стороны, две кривые-до и после воздействия-для контрольной группы и> с другой стороны, две аналогичные кривые для опытной группы. При этом масштаб кривых должен быть одинаковым.

Видно, что в контрольной группе разница между средними обоих распределений невелика, и поэтому можно думать, что обе выборки принадлежат к одной и той же популяции. Напротив, в опытной группе большая разность между средними позволяет предположить что рас­пределения для фона и воздействия относятся к двум различным популяциям, разница между которыми обусловлена тем, что на одну из них повлияла независимая переменная.

Проверка гипотез

Как уже говорилось, задача индуктивной статистики - определять достаточно ли велика разность между средними двух распределений для того, чтобы можно было объяснить ее действием независимой перемен­ной, а не случайностью, связанной с малым объемом выборки (как,

2%

по-видимому, обстоит дело в случае с опытной группой нашего экспе­римента).

При этом возможны две гипотезы:

1) нулевая гипотеза (Но), согласна которой разница между распреде­лениями недостоверна; предполагается, что различие недостаточно зна­чительно, и поэтому распределения относятся к одной и той же популя­ции, а независимая переменная не оказывает никакого влияния;

2) альтернативная гипотеза (НД какой является рабочая гипотеза нашего исследования. В соответствии с этой гипотезой различия между обоими распределениями достаточно значимы и обусловлены влиянием независимой переменной.

Основной принцип метода проверки гипотез состоит в том, что выдвигается нулевая гипотеза Но, с тем чтобы попытаться опровергнуть ее и тем самым подтвердить альтернативную гипотезу Нх, Действитель­но, если результаты статистического теста, используемого для анализа разницы между средними, окажутся таковы, что позволят отбросить Но, это будет означать, что верна HL, т.е. выдвинутая рабочая гипотеза по дт ве рж дается.

В гуманитарных науках принято считать, что нулевую гипотезу можно отвергнуть в пользу альтернативной гипотезы, если по результа­там статистического теста'вероятность случайного возникновения най­денного различия не превышает 5 из 100!. Если же этот уровень достоверности не достигается, считают, что разница вполне может быть случайной и поэтому нельзя отбросить нулевую гипотезу.

Для того чтобы судить о том, какова вероятность ошибиться, принимая или отвергая нулевую гипотезу, применяют статистические методы, соответствующие особенностям выборки.

Так, для количественных данных (см. дополнение БЛ) при распреде­лениях, близких к нормальным, используют параметрические методы, основанные на таких показателях, как средняя и стандартное отклоне­ние. В частности, для определения достоверности разницы средних для двух выборок применяют метод Стьюдента, а для того чтобы судить о различиях между тремя или большим числом выборок,-тест F, или дисперсионный анализ.

Если же мы имеем дело с неколичественными данными или выборки слишком малы для уверенности в том, что популяции, из которых они взяты, подчиняются нормальному распределению, тогда используют непараметрические методы -критерий х2 (лм-квадрат) для качественных данных и критерии знаков, рангов, Манна-Уитни, Вилкоксона и др, для порядковых данных.

Кроме того, выбор статистического метода зависит от того, явля­ются ли те выборки, средние которых сравниваются, независимыми (т. е,, например, взятыми из двух разных групп испытуемых) кли зависимыми

&bsol; Разумеется, рнск ошибиться будет еще меньше, если окажется, что эта вероятность составляет 1 на 100 или* еще лучше, I на 1000.

Статистика и оорашгпжи данных

(т. е. отражающими результаты одной и той же группы испытуемых до и после воздействия или после двух различных воздействий).

Дополнение Б.З. Уровни достоверности (значимости)

Тот или иной вывод с некоторой вероятностью может оказаться ошибочным, причем эта вероятность тем меньше, чем больше имеется данных для обоснования этого вывода. Таким образом, чем больше получено результатов, тем в большей степени по различиям между двумя выборками можно судить о том, что действительно имеет место в той популяции, из которой взяты эти выборки.

Однако обычно используемые выборки относительно невелики, и в этих случаях вероятность ошибки может быть значительной, В гумани­тарных науках принято считать, что разница между двумя выборками отражает действительную разницу между соответствующими популя­циями лишь в том случае, если вероятность ошибки для этого утвержде­ния не превышает 5%, т.е. имеется лишь 5 шансов из 100 ошибиться, выдвигая такое утверждение. Это так называемый уровень достоверно­сти (уровень надежности, доверительный уровень) различия. Если этот уровень не превышен, то можно считать вероятным, что выявленная нами разница действительно отражает положение дел в популяции (отсюда еще одно название этого критерия-порог вероятности).

Для каждого статистического метода этот уровень можно узнать из таблиц распределения критических значений соответствующих крите­риев (f, х1 и т, д.); в этих таблицах приведены цифры для уровней 5% (0,05), 1% (0,01) или еще более высоких. Если значение критерия для данного числа- степеней свободы (см. дополнение Б.4) оказывается ниже критического уровня, соответствующего порогу вероятности 5%, то нулевая гипотеза не может считаться опровергнутой, и это означает, что выявленная разница недостоверна.

Параметрические методы

Метод Стьюдента (tf-тест)

Это параметрический метод, используемый для проверки гипотез о достоверности разницы средних при анализе количественных данных о популяциях с нормальным распределением и с одинаковой вариан-сой *.

Метод Стьюдента различен для независимых и зависимых выборок. Независимые выборки получаются при исследоваиии двух различных

1 К сожалению, метод Стьюдента слишком часто используют для малых выборок, не убедившись предварительно в том, что данные в соответствующих популяциях подчиняются закону нормального распределения (например, ре­зультаты выполнения слишком легкого задания, с которым справились все испытуемые* или же, наоборот, слишком трудного задания не дают нормального распределения).

групп испытуемых (в нашем эксперименте это контрольная и опытная группы). В случае независимых выборок для анализа разницы средних применяют формулу

где

-средняя первой выборки;
-средняя второй выборки;

-стандартное отклонение

для первой выборки;

-стандартное отклонение

для второй выборки;

-число элементов в первой

и второй выборках.