Смекни!
smekni.com

Что такое психология том 2 Годфруа Ж (стр. 66 из 86)

Распределение частот (числа пораженных мишеней)

Уже при первом взгляде не получение ряды можно заметить, что многие данные принимают одни и те же значения, причем одни значения встречаются чаще, а другие-реже. Поэтому было бы интересно вначале графически представить распределение различных значений с учетом их частот. При этом получают следующие столбиковые диаграммы:

Контрольная группа

После воздействий (дополнить столбиками!

Опытная группа

10 1 12 14 15 16 17 18 19 £0 21 22 23
Фон

После воздействии {дополнить столбиками)

Такое распределение данных по их значениям дает нам уже гораздо больше, чем представление в виде радов. Однако подобную группировку используют в основном лишь для качественных данных, четко разде­ляющихся на обособленные категории (см. дополнение Б. I),

Что касается количественных данных, то они всегда располагаются на непрерывной шкале и, как правило, весьма многочисленны. Поэтому такие данные предпочитают группировать по классам, чтобы яснее видна была основная тенденция распределениям

Такая группировка состоит в основном в том, что объединяют данные с одинаковыми или близкими значениями в классы и определяют частоту для каждого класса. Способ разбиения на классы зависит от того, что именно экспериментатор хочет выявить при разделении изме­рительной шкалы на равные интервалы. Например, в нашем случае можно сгруппировать данные по классам с интервалами в две или три единицы шкалы:

X X
X X X X
X X X X X х X X X
10 11 12 13 14 15 16 17 18 19 20 21 £2 23
Фом
3 9 1 1 1 12 13 14 1 5 16 1 7 16 19 20 21 22 23 24 25
л.
6 6 9 10 11 1 2 1 3 1 4 15 1 6 17 18 19 20 21 22
284 Приложение Б
Контрольная групп*
X
X X
X X ж
X X X X X X
X X х X X X X
X X X X * х X X X X
Клксы 10-11 12-13 14 15 ieir 13-19 20-21 гг-га 9-1 12-14 15-17 16-го 21-23
Частоты 1 е 5 э г 0 1 1 А 3 1
Фон Фан
(с интервалами в 2 ъд.\ (с интервалами в, 3 вд,}

(заполнить таким же образом)

_

Выбор того или иного типа группировки зависит от различных соображений. Так, в нашем случае группировка с интервалами между классами в две единицы хорошо выявляет распределение результатов вокруг центрального «пика». В то же время группировка с интервалами в три единицы обладает тем преимуществом, что дает более обобщен­ную и упрощенную картину распределения* особенно если учесть, что число элементов в каждом классе невелико1. Именно поэтому в дальней* шем мы будем оперировать классами в три единицы.

Опытная групп*

Классы в-10
Частоты
Фон
Классы 5-7
Частоты

После воздействий (с интервалами в 3 ед.)

Данные, разбитые на классы по непрерывной шкале, нельзя предста­вить графически так, как это сделано выше. Поэтому предпочитают

1 При большом количестве данных число классов по возможности должно быть где-то в пределах от 10 ло 20, с интервалами до 10 и более.

Классы а-э
Частоты
После воздействия {с интервалами в 2 ед.) После воздействия (с интервалами в 3 ед-1

"_____________Статистика и обработка данных____________285

использовать так называемые гистограммы-способ графического

представления в виде примыкающих друг к другу прямоугольников:

Фон Поел* воздействия Фон После воздействия

Опытная группа Контрольная групп*

Наконец, для еще более наглядного представления общей конфигу­рации распределения можно строит полигоны распределения частот. Для этого отрезками прямых соединяют центры верхних сторон всех прямоугольников гистограммы, а затем с обеих сторон «замыкают» площадь под кривой, доводя концы полигонов до горизонтальной оси (частота = 0) в точках, соответствующих самым крайним значениям распределения. При этом получают следующую картину:

Частоты

Контрольная группа Опытная группа

Если сравнить полигоны, например, для фоновых (исходных) значе­ний контрольной группы и значений после воздействия для опытной группы, то можно будет увидеть, что в первом случае полигон почти симметричен (т. е, если сложить полигон вдвое по вертикали, проходя­щей через его середину, то обе половины наложатся друг на друга)* тогда как для экспериментальной группы он асимметричен и смещен влево (так что справа у него как бы вытянутый шлейф).

Полигон для фоновых данных контрольной группы сравнительно близок к идеальной кривой, которая могла бы получиться для бесконеч­но большой популяции. Такая кривая -кривая нормального распределе­ния -имеет колоколообразную форму я строго симметрична. Если же количество данных ограничено (как в выборках, используемых для научных исследований), то в лучшем случае получают лишь некоторое приближение (аппроксимацию) к кривой нормального распределения.

Приложение f>

Если вы построите полигон для фоновых значений опытной группы и значений после воздействия для контрольной группы, то вы наверняка заметите, что так же будет обстоять дело и в этих случаях.

Оценка центральной тенденции

Если распределения для контрольной группы и для фоновых значе­ний в опытной группе более или. менее симметричны, то значения, получаемые в опытной группе после воздействия, группируются, как уже говорилось, больше в левой части кривой. Это говорит о том, что после употребления марихуаны выявляется тенденция к ухудшению показате­лей у большого числа испытуемых.

Для того чтобы выразить подобные тенденции количественно, ис­пользуют три вида показателей моду, медиану и среднюю.

1. Мода (Мо)-это самый простой из всех трех показателей. Она соответствует либо наиболее частому значению, либо среднему значе­нию класса с наибольшей частотой. Так, в нашем примере для экспери­ментальной группы мода для фона будет равна 15 (этот результат встречается четыре раза и находится в середине класса 14-15-16), а после воздействия (середина класса 8-910),

Мода используется редко и главным образом для того, чтобы дать общее представление о распределении. В некоторых случаях у распреде­ления могут быть две моды; тогда говорят о бимодальном распределе­нии. Такая хартина указывает на то> что в данном совокупности имеются две относительно самостоятельные группы (см,, например, данные Триона, приведенные в документе 3.5).

Бимодальное распределение

*

2, Медиана (Me) соответствует центральному значению в последова­тельном ряду всех полученных значений. Так, для фона в эксперимен­тальной группе, где мы имеем ряд

10 11 12 13 14 14 15 15 15 15 17 17 19 20 21,

медиана соответствует 8-му значению, т.е. 15. Для результатов воздей­ствия в экспериментальной группе она равна 10.

В случае если число данных п, четное, медиана равна средней арифметической между значениями, находящимися в раду на л/2-м и я/2 + 1-м местах. Так, для- результатов воздействия для восьми юношей опытной группы медиана располагается между значениями, находящимися на 4-м (8/2 = 4) и 5-м местах в ряду. Если выписать весь

Статистика и обработка данных

2У7

ряд для этих данных;, а именно

7 8 9 II 12 13 14 16,

то окажется, что медиана соответствует (II + 12)/2 =11,5 (видно, что медиана не соответствует здесь ни одному из полученных значений),

3. Средняя арифметическая (1Й) (далее просто «средняя») - это наибо­лее часто используемый показатель центральной тенденции. Ее приме­няют, в частности, в расчетах, необходимых для описания распределения и для его дальнейшего анализа. Ее вычисляют t разделив сумму всех значений данных на число этих данных. Так, для нашей опытной группы она составит- 15,2(228/15) для фона и 11,3(169/15) для результатов воздействия.