Федеральное агентство по образованию
Государственное образовательное учреждение
Высшего профессионального образования
«Поморский Государственный Университет
им. М.В.Ломоносова»
Институт развития ребёнка
Факультет коррекционной педагогики
Сентерева Ирина Анатольевна
Электрофизиологическая диагностика неврологичесской патологии у детей.
Курсовая работа
Выполнила:
студентка II курса
отд. логопедии
Проверил:
к.б.н. Подоплекин А.Н.
Архангельск
2010
Содержание:
Ведение________________________________________________________3
Глава 1. ЛИТЕРАТУРНЫЙ ОЗОР
1.1. Физиологические основы постоянных потенциалов _______________5
1.2. Метод регистрации УПП головного мозга_______________________11
ГЛАВА 2. Практическая часть
2.1.Методика регистрации УПП головного мозгас помощью аппаратно - программного комплекса «Нейроэнергометр - 03» ___________________16
2.2. Интерпретация данных УПП головного мозга у детей 9-10 лет с СДВГ_________________________________________________________18
Заключение____________________________________________________22
Список литературы______________________________________________24
Приложения___________________________________________________27
Введение
В последние годы появилась возможность исследовать не только информационные, но и энергетические процессы в головном мозге здоровых и больных людей в различных функциональных состояниях. Изучение деятельности мозга путем исследования его электрической активности является давно признанным направлением в нейрофизиологии человека. Современные технологии позволили создать методы компьютерной визуализации биохимических процессов. Наиболее распространенными из них являются позитронная эмиссионная томография (ПЭТ), однофотонная эмиссионная компьютерная томография (ОЭКТ), магнитно-резонансная томография (МРТ), анализ уровня постоянных потенциалов (УПП) головного мозга. Рассмотрим подробнее метод анализа УПП [21].
УПП головного мозга - это медленно меняющийся, устойчивый потенциал милливольтного диапазона, являющийся одним из видов сверхмедленных физиологических процессов (СМФП) головного мозга [10].
Диагностическое значение анализа УПП мозга очень велико. При заболеваниях, связанных с развитием функционального напряжения, наблюдается нарастание УПП. Повышение УПП выявлено при невротических расстройствах, сопровождающихся тревогой и фобиями, при тревожных депрессиях, в состоянии стресса. Увеличение УПП коррелирует с уровнем гормона стресса кортизола. Напротив, в случаях истощения энергетических ресурсов - у больных с апатической депрессией,- отмечается снижение УПП. Более значительное повышение УПП, как правило, наблюдается в правом полушарии, что указывает на ведущую роль его в генезе тревожных расстройств [11].
Метод анализа УПП является аналогом дорогостоящих диагностических методик изучения энергозатрат головного мозга. Он, являясь абсолютно безвредным, может использоваться для диагностики патологий у детей [24].
Таким образом, анализ УПП дает возможность выявлять изменения энергозатрат мозга при различных нервных и психических заболеваниях, учитывать динамику энергообеспечения мозга при медикаментозных и психотерапевтических воздействиях.
Целью настоящей работы являлось изучение способов электрофизиологической диагностики нервно - психической патологии с помощью регистрации УПП головного мозга.
Для достижения поставленной цели необходимо решить ряд задач:
1. Изучить теоретические основы УПП головного мозга.
2. Охарактеризовать особенности УПП при неврологических отклонениях.
Объектом исследования является электрическая активность головного мозга детей.
Предметом исследования выступают особенности УПП головного мозга у детей с неврологической патологией.
Гипотеза: предполагается, что электрофизиологические методы позволяют проводить экспресс оценку функциональным состояниям мозга в целом и его отдельных структурных элементов при различных неврологических расстройствах, что значительно улучшает качество диагностики неврологических расстройств у детей.
ГЛАВА 1. Литературный обзор
1.1. Физиологические основы постоянных потенциалов
Оценка функционального состояния коры большого мозга человека является трудной и до настоящего времени нерешенной задачей. Одним из признаков, косвенно свидетельствующем о функциональном состоянии структур головного мозга, является регистрация в них колебаний электрических потенциалов [21].
УПП - один из наиболее старых электрофизиологических показателей. Еще в 1827 г. Л. Нобиле описал так называемый «лягушачий ток», который распространялся от конечностей к голове. У человека направление подобных токов носило противоположный характер [7].
По мнению одних исследователей, генерация сверхмедленных изменений потенциала имеет нейрональное происхождение, возникает благодаря различаю в степени поляризации апикальных дентритов и тел нейронов. По природе своей изменения постоянного потенциала (ПП) сходны с дендритными потенциалами, причем сдвиги ПП обусловлены суммацией эффектов последействия, остающегося в коре от каждого из колебаний, возникающих на раздражение [5].
ПП рассматривается как биоэлектрический феномен, отражающий суммарный уровень поляризации всего органа. Полагают, что медленные сдвиги ПП, являются отражением процесса возбуждения, выступающего в виде медленного стационарного процесса [18].
Накоплено достаточно большое количество данных об участии нейроглии в генерации длительных электрических процессов и показано, что сами клетки нейроглии способны генерировать очень медленную электрическую активность. ПП головного мозга рассматриваются как результат нейронно - глиального взаимодействия [17].
При исследовании возможных механизмов взаимодействия нейронов и нейроглии при генерации СМФП уделяют значительное внимание соотношению и взаимообусловленности процессов метаболизма на границах раздела нервных и глиальных элементов в различных условиях. Особое значение придается распределению АТФ- азы на граничащих поверхностях нейрон - глия, так как с ее активностью связывают способность нейроглии регулировать экстраклеточную концентрацию К+ и создавать активный транспорт ионов. Это указывает на вовлечение в сверхмедленный цикл звеньев энергетического метаболизма (в частности фосфатного обмена) и соответственно регуляторных механизмов, обеспечивающих энергетику [1].
Таким образом, несинаптическая передача через глию, ее влияние на пороги синапсов и метаболическое взаимодействие глии и нейронов являются теми звеньями, через которые осуществляется слабое взаимодействие, мерой которого и являются СМФП головного мозга [1].
Существенным фактором представляется отчетливая связь генеза сверхмедленных колебаний потенциала с процессами метаболизма в головном мозге. Выделяют два класса регистрируемых в головном мозге явлений - биоэлектрические, как результат организованного электрического поля (при этом мозг рассматривается как объемный проводник), и биоэлектрохимические, как результат локальных изменений электродного потенциала, определяемые в основном окислительно - восстановительными процессами и химическим составом окружающей среды [23]. Некоторые исследователи полагают, что ПП не имеет отношения к активности нервных элементов, а обусловлен различиями ионного состава по одну и другую сторону гематоэнцефалического барьера (ГЭБ) [4].
Исследования последних лет показывают, что УПП мозга возникает в результате суммации мембранных потенциалов нервных и глиальных клеток, а также разности потенциалов на мембранах ГЭБ [11], хотя их вклад в генез УПП в конкретных ситуациях может быть различным. Считается, что генерация мембранных потенциалов требует энергозатрат, идущих на совершение работы против электрохимического градиента потенциалобразующих ионов, поэтому параметры УПП связанны с церебральными энергозатратами, позволяя оценивать их интенсивность [21].
Источником УПП, при отведении от поверхности головы, являются сосудистые потенциалы, главным образом, потенциалы ГЭБ. Эти потенциалы можно зарегистрировать от поверхности головы благодаря связи венозных систем мозга и наружных покровов головы (прил. 1) [13].
Величина сосудистых потенциалов зависит от концентрации водородных ионов внутри сосудов. Поскольку кислоты являются конечным продуктом энергетического обмена то в норме по концентрации [H+] в оттекающей от мозга крови, следовательно, по величине УПП, можно судить об интенсивности церебрального энергетического обмена (прил. 2). Попадая из мозга в кровь, ионы водорода создают разность потенциалов на мембране ГЭБ, которая может быть зарегистрирована и от кожи головы [21].
Выдвинуто предположение, что УПП отражает деятельность нейрофизиологических механизмов стационарного назначения, которые поддерживают церебральный гомеостаз в норме и, в частности, регулируют функциональную межполушарную ассиметрию в отличие от электроэнцефалограммы и вызванных потенциалов, отражающих преимущественно процессы восприятия и переработки информации [3].
ПП различаются в зависимости от того, зарегистрированы они поляризуемыми или неполяризуемыми электродами. В первом случае фиксируется истинная разность электрических потенциалов между какими-либо областями, а во втором на эту разность накладываются потенциалы самих электродов, величина которых зависит от химических процессов, происходящих на металлических кончиках электродов [23].
ПП, отводимые поляризуемыми электродами, подробно исследуются Т.Б. Швец, В.А. Илюхиной, Д.К. Камбаровой и др. В настоящей работе рассматриваются ПП, зарегистрированные исключительно неполяризуемыми электродами.