Смекни!
smekni.com

Электрофизиологическая диагностика неврологичесской патологии у детей (стр. 3 из 4)

Тем не менее, контроль и минимизация влияния кожных потенциалов при записи УПП возможны. Величина кожного потенциала зависит от кожного сопротивления. Об этом свидетельствуют генез кожных потенциалов, а также принципиальное сходство кожно-гальванических реакций, использующих в качестве показателя кожное сопротивление и кожный потенциал. При кожно-гальванической реакции снижение кожного потенциала происходит параллельно со снижением кожного сопротивления. Поэтому обеспечение минимальной величины и стабильного уровня кожного сопротивления дает возможность минимизировать вклад кожных потенциалов в регистрируемую величину УПП. Снижение сопротивления и потенциалов кожи достигается путем обезжиривания кожи с помощью спирта и последующей аппликацией на кожу за 3-5 мин до начала записи насыщенного раствора NaCl. При записи УПП необходимо параллельно регистрировать кожное сопротивление. Низкий уровень кожного сопротивления по постоянному току (в пределах 5 кОм), равенство его значений в местах отведения и стабильность в процессе записи УПП свидетельствуют о малой величине и одинаковом уровне кожных потенциалов в соответствующих областях. Одинаковый и минимальный вклад кожных потенциалов в каждой из областей позволяет существенно снизить влияние артефактов кожного происхождения на регистрируемую величину УПП [18].

Для записи УПП, как правило, используется монополярное отведение, при котором оценивается разность потенциалов между активными электродами, находящимися над различными отделами мозга, и референтным электродом. Все участки тела имеют тот или иной постоянный потенциал, поэтому для расположения референтного электрода выбирают зоны с минимальными и стабильными потенциалами. Такие характеристики имеют области, расположенные над костными структурами, например надколенник и запястье. Использование области запястья в качестве референтной имеет определенные преимущества: референтный электрод удобно располагать на запястье, потенциал запястья более стабилен, так как он является результатом усреднения потенциалов достаточно большой области [15].

Напротив, не рекомендуется располагать референтный электрод на участках тела со значительными и меняющимися потенциалами, которые регистрируются в областях расположения мышц, на ладонях и подошвах, где наиболее выражена кожно-гальваническая реакция. Некоторые, особенно зарубежные авторы располагают референтный электрод на мочке уха, также как при регистрации ЭЭГ. Такая локализация референтного электрода обладает рядом технических удобств, однако лишает информации о разности потенциалов между головой и отдаленными областями тела [18].

ГЛАВА 2. ПРАКТИЧЕССКАЯ ЧАСТЬ

2.1.Методика регистрации УПП головного мозга с помощью аппаратно - программного комплекса «Нейроэнергометр - 03»

Для регистрации, обработки и анализа уровня постоянного потенциала (УПП) головного мозга применялся специализированный аппаратно - программный диагностический комплекс "Нейроэнергометр-03". "Нейроэнергометр-03" позволяет производить оценку энергозатрат мозга и его отдельных областей.

УПП регистрировался монополярно с помощью неполяризуемых хлорсеребряных электродов «ЭВЛ-1-М4» (референтный) и «ЕЕ-G2» (активный) и усилители постоянного тока с входным сопротивлением 10 Мом. До наложения электродов на голову испытуемого производилось их предварительное тестирование в физиологическом растворе, при котором измерялась разность потенциалов и сопротивление между электродами в отсутствие биологического объекта, разность потенциалов между электродами не превышала 20 мВ, а межэлектродное сопротивление 15-20 кОм. Дрейф электродного потенциала не превышал 1-2 мВ за 10 минут.

Активный электрод располагали вдоль сагиттальной линии - в лобной, центральной, затылочной, в правой и левой височных областях (точки Fpz . Cz . Oz . Td . Ts по международной схеме «10-20%»). Референтный электрод располагался на запястье правой руки.

Регистрация УПП у испытуемого осуществлялась через 5-7 минут после наложения на точки отведения электродов с контактными тампонами, смоченными гипертоническим (30%) раствором NaCl, благодаря которому происходило снижение кожного сопротивления до 1-2 кОм, уменьшалась величина кожных потенциалов, а так же блокировалась кожно-гальваническая реакция. За указанное время происходят переходные электрохимические процессы в коже, исчезают трибоэлектрические явления. При экспериментальном измерении, длительность которого составила 15 минут, осуществлялся постоянный контроль значений кожного сопротивления в местах отведения УПП, которое не превышало 30 кОм. Информацию об истинном значении УПП головного мозга получали благодаря автоматическому вычитанию из суммарных регистрируемых значений потенциалов межэлектродной разности потенциалов. Полученные данные обрабатывались с помощью специального программного обеспечения с построением карты распределения уровня постоянного потенциала.

Анализ УПП производился путем картирования полученных с помощью монополярного измерения значений УПП и расчета отклонений УПП в каждом из отведений от средних значений, зарегистрированных по всем областям головы, при котором появляется возможность оценки локальных значений УПП в каждой из областей с исключением влияний, идущих от референтного электрода. Полученные характеристики распределения УПП сравнивались со среднестатистическими нормативными значениями для определенных возрастных периодов, встроенных в программное обеспечение комплекса «Нейроэнергометр- 03».

Аппаратно-программный комплекс "Нейроэнергометр-03" (прил. 5) предназначен для регистрации, обработки и анализа УПП головного мозга. Использование специализированных методов анализа и топографического картирования УПП позволяет производить непрямую оценку интенсивности энергетического обмена головного мозга и его отдельных областей.

Метод анализа УПП эффективен для выявления состояний, связанных с повышением энергозатрат (стадия напряжения при стрессе, различные виды тревоги, тревожная депрессия, снижение порога судорожной готовности, и т.д.) и с их снижением (стадия истощения при стрессе, апатическая депрессия, сосудистые заболевания мозга и т.д.). Показано снижение церебрального энергетического обмена на фоне транквилизаторов, нейролептиков, а также при гипнозе и повышение церебрального энергообмена под влиянием ноотропов. Метод прошел аппробацию в ведущих неврологических, психиатрических клиниках, детских и геронтологических лечебных центрах.

2.2. Интерпретация данных УПП головного мозга

у детей 9-10 лет с СДВГ

Настоящим исследованием был проведен анализ УПП головного мозга у детей с помощью аппаратно – программного комплекса «Нейроэнергометр - 03» [прил. 6,7,8,9,10]. В исследовании принимало участие 5 детей 9-10 лет. Исследование проводилось под руководством А.Н. Подоплекина. В таблице 1 приведены различая показателей УПП головного мозга детей с разными видами СДВГ. Ниже приводится разбор показателей УПП детей.

Данил З. Суммарные (SUM) и средние (Xcp) показатели высокие, следовательно, энергозатраты мозга значительно повышены. Показатели Fz-Xcp и Ts-Xcp отрицательные, следовательно, энергозатраты в лобной и левой височной областях умеренно снижены по сравнению с другими отделами мозга. Межполушарная асимметрия с умеренным преобладанием энергозатрат в правом полушарии, о чем свидетельствуют положительный показатель Td-Ts.

Заключение: функциональное напряжение головного мозга, умеренно сниженный энергообмен в лобно-левовисочной области головного мозга.

Таблица 1

Значения УПП головного мозга у детей 9-10 лет с СДВГ.

Показателив mV Данил10 лет Роман9 лет Никита9 лет Алексей9 лет Екатерина10 лет
Fz 30.85 2.05 10.93 -1.12 43.73
Cz 33.77 8.34 14.06 3.59 47.19
Oz 34.55 7.08 15.15 6.79 45.74
Td 33.05 7.17 16.52 6.18 47.74
Ts 30.96 8.67 16.55 -1.23 46.34
SUM 163.18 33.31 73.21 14.21 230.74
Xcp 32.64 6.66 14.64 2.84 46.15
Fz-Xcp -1.79 -4.61 -3.71 -3.96 -2.42
Cz-Xcp 1.13 1.68 -0.58 0.75 1.04
Oz-Xcp 1.91 0.42 0.51 3.95 -0.14
Td-Xcp 0.41 0.51 1.88 3.34 1.59
Ts-Xcp -1.68 2.01 1.91 -4.07 0.19
Fz-Cz -2.92 -6.29 -3.13 -4.71 -3.46
Fz-Oz -3.70 -5.03 -4.22 -7.91 -2.01
Fz-Td -2.20 -5.12 -5.59 -7.30 -4.01
Fz-Ts -0.11 -6.62 -5.62 0.11 -2.61
Cz-Oz -0.78 1.26 -1.09 -3.20 1.45
Cz-Td 0.72 1.17 -2.46 -2.59 -0.55
Cz-Ts 2.81 -0.33 -2.49 4.82 0.85
Cz-Td 1.50 -0.09 -1.37 0.61 -2.00
Cz-Ts 3.59 -1.59 -1.40 8.02 -0.60
Td-Ts 2.09 -1.50 -0.03 7.41 1.40

Роман С. Суммарные (SUM) и средние (Xcp) показатели ниже среднего, следовательно, энергозатраты мозга умеренно снижены. Показатель Fz-Xcp отрицательный, следовательно энергозатраты в лобной области значительно снижены по сравнению с другими отделами мозга. Межполушарная асимметрия с умеренным преобладанием энергозатрат в левом полушарии, о чем свидетельствуют отрицательный показатель Td-Ts.

Заключение: пониженная функциональная активность головного мозга, сниженный энергообмен в лобных отделах головного мозга.

Никита Л. Суммарные (SUM) и средние (Xcp) показатели в пределах нормы, соответственно, энергозатраты мозга в пределах нормы. Показатель Fz-Xcp отрицательный, следовательно энергозатраты в лобной области значительно снижены по сравнению с другими отделами мозга. Межполушарная асимметрия с умеренным преобладанием энергозатрат в левом полушарии, о чем свидетельствуют отрицательный показатель Td-Ts.