Тем не менее, контроль и минимизация влияния кожных потенциалов при записи УПП возможны. Величина кожного потенциала зависит от кожного сопротивления. Об этом свидетельствуют генез кожных потенциалов, а также принципиальное сходство кожно-гальванических реакций, использующих в качестве показателя кожное сопротивление и кожный потенциал. При кожно-гальванической реакции снижение кожного потенциала происходит параллельно со снижением кожного сопротивления. Поэтому обеспечение минимальной величины и стабильного уровня кожного сопротивления дает возможность минимизировать вклад кожных потенциалов в регистрируемую величину УПП. Снижение сопротивления и потенциалов кожи достигается путем обезжиривания кожи с помощью спирта и последующей аппликацией на кожу за 3-5 мин до начала записи насыщенного раствора NaCl. При записи УПП необходимо параллельно регистрировать кожное сопротивление. Низкий уровень кожного сопротивления по постоянному току (в пределах 5 кОм), равенство его значений в местах отведения и стабильность в процессе записи УПП свидетельствуют о малой величине и одинаковом уровне кожных потенциалов в соответствующих областях. Одинаковый и минимальный вклад кожных потенциалов в каждой из областей позволяет существенно снизить влияние артефактов кожного происхождения на регистрируемую величину УПП [18].
Для записи УПП, как правило, используется монополярное отведение, при котором оценивается разность потенциалов между активными электродами, находящимися над различными отделами мозга, и референтным электродом. Все участки тела имеют тот или иной постоянный потенциал, поэтому для расположения референтного электрода выбирают зоны с минимальными и стабильными потенциалами. Такие характеристики имеют области, расположенные над костными структурами, например надколенник и запястье. Использование области запястья в качестве референтной имеет определенные преимущества: референтный электрод удобно располагать на запястье, потенциал запястья более стабилен, так как он является результатом усреднения потенциалов достаточно большой области [15].
Напротив, не рекомендуется располагать референтный электрод на участках тела со значительными и меняющимися потенциалами, которые регистрируются в областях расположения мышц, на ладонях и подошвах, где наиболее выражена кожно-гальваническая реакция. Некоторые, особенно зарубежные авторы располагают референтный электрод на мочке уха, также как при регистрации ЭЭГ. Такая локализация референтного электрода обладает рядом технических удобств, однако лишает информации о разности потенциалов между головой и отдаленными областями тела [18].
ГЛАВА 2. ПРАКТИЧЕССКАЯ ЧАСТЬ
2.1.Методика регистрации УПП головного мозга с помощью аппаратно - программного комплекса «Нейроэнергометр - 03»
Для регистрации, обработки и анализа уровня постоянного потенциала (УПП) головного мозга применялся специализированный аппаратно - программный диагностический комплекс "Нейроэнергометр-03". "Нейроэнергометр-03" позволяет производить оценку энергозатрат мозга и его отдельных областей.
УПП регистрировался монополярно с помощью неполяризуемых хлорсеребряных электродов «ЭВЛ-1-М4» (референтный) и «ЕЕ-G2» (активный) и усилители постоянного тока с входным сопротивлением 10 Мом. До наложения электродов на голову испытуемого производилось их предварительное тестирование в физиологическом растворе, при котором измерялась разность потенциалов и сопротивление между электродами в отсутствие биологического объекта, разность потенциалов между электродами не превышала 20 мВ, а межэлектродное сопротивление 15-20 кОм. Дрейф электродного потенциала не превышал 1-2 мВ за 10 минут.
Активный электрод располагали вдоль сагиттальной линии - в лобной, центральной, затылочной, в правой и левой височных областях (точки Fpz . Cz . Oz . Td . Ts по международной схеме «10-20%»). Референтный электрод располагался на запястье правой руки.
Регистрация УПП у испытуемого осуществлялась через 5-7 минут после наложения на точки отведения электродов с контактными тампонами, смоченными гипертоническим (30%) раствором NaCl, благодаря которому происходило снижение кожного сопротивления до 1-2 кОм, уменьшалась величина кожных потенциалов, а так же блокировалась кожно-гальваническая реакция. За указанное время происходят переходные электрохимические процессы в коже, исчезают трибоэлектрические явления. При экспериментальном измерении, длительность которого составила 15 минут, осуществлялся постоянный контроль значений кожного сопротивления в местах отведения УПП, которое не превышало 30 кОм. Информацию об истинном значении УПП головного мозга получали благодаря автоматическому вычитанию из суммарных регистрируемых значений потенциалов межэлектродной разности потенциалов. Полученные данные обрабатывались с помощью специального программного обеспечения с построением карты распределения уровня постоянного потенциала.
Анализ УПП производился путем картирования полученных с помощью монополярного измерения значений УПП и расчета отклонений УПП в каждом из отведений от средних значений, зарегистрированных по всем областям головы, при котором появляется возможность оценки локальных значений УПП в каждой из областей с исключением влияний, идущих от референтного электрода. Полученные характеристики распределения УПП сравнивались со среднестатистическими нормативными значениями для определенных возрастных периодов, встроенных в программное обеспечение комплекса «Нейроэнергометр- 03».
Аппаратно-программный комплекс "Нейроэнергометр-03" (прил. 5) предназначен для регистрации, обработки и анализа УПП головного мозга. Использование специализированных методов анализа и топографического картирования УПП позволяет производить непрямую оценку интенсивности энергетического обмена головного мозга и его отдельных областей.
Метод анализа УПП эффективен для выявления состояний, связанных с повышением энергозатрат (стадия напряжения при стрессе, различные виды тревоги, тревожная депрессия, снижение порога судорожной готовности, и т.д.) и с их снижением (стадия истощения при стрессе, апатическая депрессия, сосудистые заболевания мозга и т.д.). Показано снижение церебрального энергетического обмена на фоне транквилизаторов, нейролептиков, а также при гипнозе и повышение церебрального энергообмена под влиянием ноотропов. Метод прошел аппробацию в ведущих неврологических, психиатрических клиниках, детских и геронтологических лечебных центрах.
2.2. Интерпретация данных УПП головного мозга
у детей 9-10 лет с СДВГ
Настоящим исследованием был проведен анализ УПП головного мозга у детей с помощью аппаратно – программного комплекса «Нейроэнергометр - 03» [прил. 6,7,8,9,10]. В исследовании принимало участие 5 детей 9-10 лет. Исследование проводилось под руководством А.Н. Подоплекина. В таблице 1 приведены различая показателей УПП головного мозга детей с разными видами СДВГ. Ниже приводится разбор показателей УПП детей.
Данил З. Суммарные (SUM) и средние (Xcp) показатели высокие, следовательно, энергозатраты мозга значительно повышены. Показатели Fz-Xcp и Ts-Xcp отрицательные, следовательно, энергозатраты в лобной и левой височной областях умеренно снижены по сравнению с другими отделами мозга. Межполушарная асимметрия с умеренным преобладанием энергозатрат в правом полушарии, о чем свидетельствуют положительный показатель Td-Ts.
Заключение: функциональное напряжение головного мозга, умеренно сниженный энергообмен в лобно-левовисочной области головного мозга.
Таблица 1
Значения УПП головного мозга у детей 9-10 лет с СДВГ.
Показателив mV | Данил10 лет | Роман9 лет | Никита9 лет | Алексей9 лет | Екатерина10 лет |
Fz | 30.85 | 2.05 | 10.93 | -1.12 | 43.73 |
Cz | 33.77 | 8.34 | 14.06 | 3.59 | 47.19 |
Oz | 34.55 | 7.08 | 15.15 | 6.79 | 45.74 |
Td | 33.05 | 7.17 | 16.52 | 6.18 | 47.74 |
Ts | 30.96 | 8.67 | 16.55 | -1.23 | 46.34 |
SUM | 163.18 | 33.31 | 73.21 | 14.21 | 230.74 |
Xcp | 32.64 | 6.66 | 14.64 | 2.84 | 46.15 |
Fz-Xcp | -1.79 | -4.61 | -3.71 | -3.96 | -2.42 |
Cz-Xcp | 1.13 | 1.68 | -0.58 | 0.75 | 1.04 |
Oz-Xcp | 1.91 | 0.42 | 0.51 | 3.95 | -0.14 |
Td-Xcp | 0.41 | 0.51 | 1.88 | 3.34 | 1.59 |
Ts-Xcp | -1.68 | 2.01 | 1.91 | -4.07 | 0.19 |
Fz-Cz | -2.92 | -6.29 | -3.13 | -4.71 | -3.46 |
Fz-Oz | -3.70 | -5.03 | -4.22 | -7.91 | -2.01 |
Fz-Td | -2.20 | -5.12 | -5.59 | -7.30 | -4.01 |
Fz-Ts | -0.11 | -6.62 | -5.62 | 0.11 | -2.61 |
Cz-Oz | -0.78 | 1.26 | -1.09 | -3.20 | 1.45 |
Cz-Td | 0.72 | 1.17 | -2.46 | -2.59 | -0.55 |
Cz-Ts | 2.81 | -0.33 | -2.49 | 4.82 | 0.85 |
Cz-Td | 1.50 | -0.09 | -1.37 | 0.61 | -2.00 |
Cz-Ts | 3.59 | -1.59 | -1.40 | 8.02 | -0.60 |
Td-Ts | 2.09 | -1.50 | -0.03 | 7.41 | 1.40 |
Роман С. Суммарные (SUM) и средние (Xcp) показатели ниже среднего, следовательно, энергозатраты мозга умеренно снижены. Показатель Fz-Xcp отрицательный, следовательно энергозатраты в лобной области значительно снижены по сравнению с другими отделами мозга. Межполушарная асимметрия с умеренным преобладанием энергозатрат в левом полушарии, о чем свидетельствуют отрицательный показатель Td-Ts.
Заключение: пониженная функциональная активность головного мозга, сниженный энергообмен в лобных отделах головного мозга.
Никита Л. Суммарные (SUM) и средние (Xcp) показатели в пределах нормы, соответственно, энергозатраты мозга в пределах нормы. Показатель Fz-Xcp отрицательный, следовательно энергозатраты в лобной области значительно снижены по сравнению с другими отделами мозга. Межполушарная асимметрия с умеренным преобладанием энергозатрат в левом полушарии, о чем свидетельствуют отрицательный показатель Td-Ts.