Смекни!
smekni.com

Практикум по общей экспериментальной и прикладной психологии Крылова А А Маничева С А (стр. 8 из 138)

.

1. Прежде всего укажем, что значение i - ширины класса группировки - нам известно, из задания: i = 5 (как для левого интервала, так и для правого).

2. Что касается N - числа измерений, то согласно определению медианы вообще, а в нашем случае точки Q3 в частности, оно должно быть одинаковым в обоих рассматриваемых интервалах: Nл = Nпр = 25 при общем числе измерений, равном 50. Отсюда

3. Анализируя группировку данных, приведенную в табл. 1.1.4, нетрудно заметить, что классом группировки, предположительно содержащим половину наблюдений левого интервала, является 3-й класс, а таким же классом для правого интервала - 6-й класс. Исходя из этого, по табл. 1.1.4 легко определить, что

для левого интервала l =19,5; Fb=10; fp= 6;

для правого интервала l =39,5; Fb = 9; fp = 6.

4. Пользуясь найденными значениями величин, производим необходимые расчеты медиан обоих интервалов:

для левого Q1=19,5 +

×5 = 21,58,

для правого Q3 = 39,5-

×5 = 36,58.

5. Согласно определению квартального отклонения следует, что

,

т. е. в нашем примере Q =

.

6. Однако этот результат получен нами для нормального распределения данных. На самом же деле, как показывает табл. 1.1.4, в нашем примере мы имеем дело с явно асимметричным распределением. Поэтому истинные полуквартильные отклонения в данном случае необходимо было рассчитывать с учетом вычисленного значения для медианы (или Q2), a именно, что = 28,25. Тогда мы получаем

для левого интервала Q2Q1 = 28,25-21,58 = 6,67,

для правого интервала Q3 - Q2 = 36,58-28,25 = 8,33.

С помощью данного приема можно очень легко определить право- и левостороннюю асимметрию любого распределения:

если Q3 - Q1 > Q2- Q1 то имела место правосторонняя асимметрия;

если Q3 - Q2 < Q2- Q1, то - левосторонняя.

И только при равенстве указанных разностей можно говорить о строго симметричном распределении.

Для каких целей служат меры центральной тенденции (М или Me) и меры изменчивости (D, S, s, Q)? Во-первых, эти меры используются для интерпретации первичных результатов. На основе полученных значений мер центральной тенденции можно, например, предвидеть наиболее вероятные результаты аналогичного исследования другой выборки. На основе же мер изменчивости можно оценить точность проведенных измерений, т. е. выявить случайные ошибки измерения. Во-вторых, та или иная из вышеназванных мер необходима для проверки статистической значимости различий (см. с. 274, Приложение I: t-критерий Стьюдента) между результатами исследования двух разных выборок, а также для вычисления так называемых коэффициентов корреляции, о которых сейчас пойдет речь.

Меры взаимосвязи. Коэффициентами корреляции пользуются для того, чтобы выяснить, существует ли взаимосвязь между двумя переменными, и определить ее степень, т. е. тесноту взаимосвязи. Значение коэффициента корреляции изменяется от -1 до +1. Величины, лежащие в этих пределах, отражают максимально возможную взаимосвязь сравниваемых переменных. Когда коэффициент корреляции равен нулю, то это означает, что взаимосвязь отсутствует. Положительная корреляционная связь указывает на прямо пропорциональное отношение между двумя переменными, а отрицательная - на обратно пропорциональную взаимосвязь. Чем больше абсолютное значение коэффициента корреляции, тем теснее связь между изучаемыми переменными. При значениях коэффициентов ± 1 можно говорить об отношении тождественности между переменными.

При сравнении порядковых величин пользуются коэффициентом ранговой корреляции по Ч. Спирмену (r), при сравнении интервальных величин - коэффициентом корреляции произведений по К. Пирсону (r). Рассмотрим кратко способы расчета этих коэффициентов.

Допустим, что с помощью двух опросников (X и Y), требующих альтернативных ответов «да» или «нет», были получены первичные результаты - ответы 15 испытуемых (N =15). Результаты представлены в виде сумм баллов за утвердительные ответы («да») для каждого испытуемого отдельно для опросника Х и опросника Y. Требуется определить, измеряют ли опросники Х и Y похожие личностные качества испытуемых, или не измеряют. Можно предположить, что если опросники по содержанию и формулировкам мало отличаются друг от друга, то сумма баллов, набранная каждым из испытуемых по опроснику X, будет близка к сумме баллов, набранных по опроснику Y.

Полученные в эксперименте первичные результаты представляют собой два ряда порядковых величин для переменной Х и для переменной Y. Для установления взаимосвязи между каждой парой порядковых величин применяют коэффициент порядковой корреляции Спирмена (r). Для расчета величины r известна следующая формула:

r =

,

где N - число сравниваемых пар величин двух переменных и d2 - квадрат разностей рангов этих величин.

Для вычисления предстоит проделать ряд операций. Прежде всего надлежит табулировать все первичные результаты (табл. 1.1.7). В 1-й графе записывают номер испытуемого, а во 2-й и 3-й - полученные им суммы баллов по первой методике (переменная X) и по второй (переменная Y).

Таблица 1.1.7

Табулирование первичных результатов для расчета коэффициента корреляции по Спирмену (r)

Номер

испытуемого

X

Y

RX

RY

d

d2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

47

71

52

48

35

35

41

82

72

56

59

73

60

55

41

75

79

85

50

49

59

75

91

102

87

70

92

54

75

68

11,0

4,0

9,0

10,0

14,5

14,5

12,5

1,0

3,0

7,0

6,0

2,0

5,0

8,0

12,5

8,0

6,0

5,0

14,0

15,0

12,0

8,0

3,0

1,0

4,0

10,0

2,0

13,0

8,0

11,0

3,0

2,0

4,0

4,0

0,5

2,5

4,5

2,0

2,0

3,0

4,0

0,0

8,0

0,0

1,5

9,00

4,00

16,00

16,00

0,25

6,25

20,25

4,00

4,00

9,00

16,00

0,00

64,00

0,00

2,25

åd2 = 71,00

Таким образом: r =

=1-
=1-
=1-0,305=0,695.

Затем каждому первичному результату присваивают ранг. Эта процедура называется ранжированием. Начинают ее с того, что среди всех значений переменной Х находят наибольшее и в одной строке с ним, но уже в 4-й графе (Rx) проставляют единицу, что и означает 1-й ранг. В нашем случае максимальное число баллов по методике Х получил испытуемый № 8, и поэтому именно его результату следует присвоить 1-й ранг. Затем находят второй по величине результат и в его строке указывают соответственно 2-й ранг. В нашем примере необходимо обратить внимание на следующее: испытуемые № 7 и 15 получили по 41 баллу, а испытуемые № 5 и 6 - по 35 баллов. Для таких случаев принято следующее правило: если в ранжируемом ряду встречаются одинаковые величины, то для них находят среднее значение и считают, что оно определяет ранг как одной, так и другой величины. Следовательно, испытуемым № 7 и 15 надо присвоить одинаковый ранг, а именно 12,5, а испытуемым № 5 и 6 - 14,5, поскольку (12+13):2 =12,5 и (14+15): 2 =14,5. Аналогично осуществляют ранжирование по второй методике, т. е. для переменной У. Заметим, что в данном случае уже трое испытуемых № 1, 7 и 14 получили по одинаковому числу баллов - 75. Первичным результатам этих испытуемых должны были бы быть присвоены 7, 8 и 9-й ранги.