Смекни!
smekni.com

Практикум по общей экспериментальной и прикладной психологии Крылова А А Маничева С А (стр. 69 из 138)

Порядок работы. Студентам предлагаются 44 задания теста «Домино» Равена. Время решения задач не ограничивается, чтобы избежать пропусков.

Обработка результатов

1. Расчет индекса трудности.

Результаты решения заданий теста объединяются в таблицу (табл. 10.2.1), где Т - количество испытуемых, правильно решивших задачу, I - индекс трудности задачи.

Таблица 10.2.1

Таблица результатов

Номер задания

T

I

В таблице следует найти самую «трудную» и «самую» легкую задачи, проверить статистическую значимость различия индексов трудности этих задач, сделать соответствующий вывод. Сравнить самую «трудную» и самую «легкую» задачи с задачами «среднего» уровня трудности.

2. Расчет коэффициента дискриминативности. Необходимо составить таблицу первичных результатов следующим образом (табл. 10.2.2), где Х - первичные результата (от 1 до 44); N1 - количество испытуемых, которые получили данный первичный результат; N2 - количество испытуемых, получивших данный первичный результат из числа решивших самую «легкую» задачу; N3 - самую «трудную» задачу.

Таблица 10.2.2

Таблица первичных результатов

Х

N1

N2

N3

Вычислить коэффициенты дискриминативности для самой «трудной», «легкой» задач.

Занятие 10.3 ПРОВЕРКА НАДЕЖНОСТИ ТЕСТА

Цель работы. Проверка надежности теста методом «тест-ретест» и методом расщепления «четное-нечетное», оценка плотности теста (консистенции).

Определение основных понятий. Надежность - характеристика теста, отражающая точность измерения и стабильность результатов. Количественно оценивается коэффициентом надежности

f =

= 1 -
,

где St - «истинная» дисперсия теста; Sх - эмпирическая дисперсия теста; Sе - дисперсия ошибки.

Прямая оценка коэффициента надежности невозможна (принципиально невозможно непосредственно определить St и Sе), поэтому применяют косвенные корреляционные методы, например метод «тест-ретест», метод расщепления.

Метод «тест-ретест» заключается в следующем: через некоторое время после первого проводится повторное тестирование с достаточным временным интервалом. Оценкой надежности служит коэффициент корреляции (Пирсона, ранговый или какой-либо иной, в зависимости от типа шкальных значений результатов тестирования).

Метод расщепления на части, в данной работе - на две части по принципу «четные-нечетные задания». В этом методе сопоставляются четные и нечетные номера заданий. Сила связи между этими двумя частями теста характеризует его надежность.

Возможно расщепление теста на любое количество частей. В предельном случае количество частей равно количеству заданий теста. Надежность в этом случае оценивается коэффициентом плотности (консистенции).

Математический аппарат

f =

; (1)

f =

= d; (2)

f =

; (3)

f1 =

; (4)

где f - коэффициент надежности; r - коэффициент корреляции между двумя частями теста (Пирсона или ранговый); S1, S2 - среднеквадратичные отклонения 1-й и 2-й половин теста, соответственно; S1 =

, S2 =
- дисперсии 1-й и 2-й половин теста, соответственно; п - количество заданий теста; d - символ для сокращения записи; f1 - коэффициент консистенции; S - дисперсия всех задач теста; р - индекс трудности задачи в десятичной дроби (1/100); q = 1- р.

Значение коэффициента надежности теста редко превышает на практике 8.

Тест считается надежным при f > 6.

- Формула Спирмена-Брауна (1). Применяется, если дисперсии обеих частей теста равны. Это предположение проверяется с помощью критерия Фишера: F = S1/S2 если эмпирическая статистика F превышает табличное значение Ft,то гипотезу о равенстве дисперсий следует отклонить. В данном случае при 21 степени свободы, для уровня значимости 0,05 Ft = 2,1.

- Формула Флангана (2). Применяется в случае неравенства дисперсий.

- Формула Кристофа (3). Применяется в случае малого количества заданий теста (п<50).

- Формула Кьюдера - Ричардсона (4). Частный случай формулы Кронбаха для дихотомических интерпретаций ответов «правильно-неправильно».

Порядок работы. Студентам предлагается тест «Домино», с которым они работали на прошлом занятии.

Обработка данных

1.Составляется таблица (табл. 10.3.1), где Х1i - количество правильно решенных задач i-м испытуемым - показатель успешности работы i-го испытуемого в 1-м тестировании; Х2i-показатель успешности работы i-го испытуемого во 2-м; N - объем выборки испытуемых.

Таблица 10.3.1

Определение надежности методом «тест-ретест»

i

X1

X2

1

N

Вычисляется коэффициент корреляции r (Х1, X2).

2. Задания теста (после повторного тестирования) разбиваются на четные и нечетные. Составляется таблица (табл. 10.3.2), где У1i, У2i - количество испытуемых, правильно решивших соответствующую задачу; п - количество задач.

Таблица 10.3.2

Определение надежности методом расщепления

i

Y1

Y2

1

п/2

Для каждого столбца вычисляются средние, дисперсии и корреляция между столбцами.

- Проверяется условие применения формулы (1). Вычисляется f.

- Вычисляется f по формуле (2).

- Вычисляется f по формуле (3).

3. Составляется таблица (табл. 10.3.3), где р=Хi/N; q=l-p; N –количество испытуемых.

Таблица 10.3.3

Таблица результатов

i

Х

р

q

1

N

- Вычисляется f1.

Анализ результатов. Сравнивая значения f, полученные различными способами, студенты проверяют, насколько способ вычисления влияет на результат, насколько существенно требование равенства дисперсий, насколько оценка коэффициента надежности чувствительна к количеству заданий теста.

Выводы. Делается вывод о ретестовой надежности теста, надежности расщепления, плотности; насколько эти показатели отличаются друг от друга.

Занятие 10.4 СТАНДАРТИЗАЦИЯ ТЕСТА

Цель работы. Построение шкал теста на основе полученных «сырых» оценок.

Определение основных понятий. Стандартизация - приведение оценок теста к виду, сопоставимому с результатами других методик, измеряющих данный признак. Чаще всего это достигается или построением шкал процентилей, или шкал, основанных на z-оценках.

Шкала процентилей - разбиение выборки испытуемых на заданное число частей. Опираясь на кумулятивную кривую, процентильное шкальное значение показывает, какая часть выборки испытуемых обладает значением признака, не превосходящим заданное, т. е. с какой вероятностью можно ожидать такие значения признака.

Алгоритм построения шкалы. Проверяется гипотеза о нормальном распределении.

Если гипотеза не отклонена, то следовательно область изменения вероятности [0,1] разбивается на заданное число частей (4 части - шкала квартилей, 10 частей - шкала децилей, 100 частей - шкала собственно процентилей).

По таблице нормального распределения для границ разбиения находится соответствующий квантиль. Этот квантиль является искомым шкальным значением.

Z-оценки - выражение шкальных значений в единицах стандартного отклонения (среднеквадратичного отклонения).

При выполнении условия нормального распределения оценок, шкалы, основанные на z-оценках, являются шкалами интервалами. Линейное преобразование, допустимое для шкал интервалов, позволяет привести их к удобному виду:

S = А + В ´ Z,

здесь А - позволяет сдвинуть начало отсчета и освободиться от отрицательных шкальных значений, множитель В изменяет масштаб, что позволяет перейти от дробных к целым шкальным значениям.