Разберем другой пример из области психологии мышления. На первый взгляд альтернатива «решил задачу /не решил задачу» вполне может быть расценена как истинно-дихотомическая классификация. И действительно, в принципе для отнесения любого конкретного решения к классу «решил задачу» достаточно соотнести получаемый в нем результат с результатом, полученным достаточно большой группой людей, аналогичным образом решивших данную задачу. Все остальные решения можно тогда отнести к классу «не решил задачу». Однако возникает вопрос: действительно ли данный человек решил эту задачу? И вот почему: вполне возможно, во-первых, что решение было случайным, т. е. случайно данный результат совпал с результатом решения других людей и, во-вторых, что этот класс задач заранее был известен данному человеку. Но, как правило, такого рода сопровождающие факторы, например в психодиагностических тестах, совершенно не учитываются.
В шкале наименований с числами, которые мы приписываем объектам или классам объектов, нельзя производить никаких арифметических действий. Числа, обозначающие классы, нельзя суммировать, вычитать, умножать и делить. Дело в том, что структура шкалы остается инвариантной по отношению к перемене обозначений (наименований) и к изменению последовательности, т. е. разного рода перестановкам. Следовательно, операция присвоения чисел классам объектов является совершенно произвольной операцией и ей не соответствуют операции, производимые с реальными объектами. Поэтому классы объектов можно обозначать любыми символами - произвольными числами, буквами или другими знаками при одном условии: каждый символ будет использован исключительно для обозначения одного класса объектов и одновременно ни один класс объектов не будет обозначаться двумя или большим числом символов.
Из вышесказанного уже очевидны те ограничения, которые накладываются на использование статистических приемов обработки результатов, полученных на уровне шкалы наименований. Поскольку операции арифметического характера не допускаются, то в качестве меры центральной тенденции можно использовать лишь моду. Модальный класс объектов определяют после подсчета абсолютных или относительных частот, т. е. встречаемости того или иного результата в каждом классе. В качестве меры тесноты взаимосвязи между различными массивами измерений можно использовать некоторые коэффициенты корреляции. Для оценки статистической значимости различий между частотами или между модами можно использовать критерий хи-квадрат.
Шкалы порядка, или ординальные шкалы. В порядковых измерениях символы, в частности числа, присваивают классам объектов так, чтобы первые отображали не только равенство или неравенство, эквивалентность или неэквивалентность, но и упорядоченность объектов в отношении измеряемого свойства. В шкалах порядка классы объектов, как и в случае шкал наименований, являются дискретными. И хотя числа можно сравнивать, всегда надо помнить, что в шкалах порядка их величины имеют лишь относительное, а не абсолютное значение. Например, если какой-то один класс объектов обозначен большим числом, чем другой, то мы понимаем, что по измеряемой характеристике первый превосходит второй, но при этом нам неизвестно, насколько велико это различие. Дело в том, что в самих измерительных операциях, связанных с установлением порядка, не содержится никаких данных о величине различий. Рассмотрим в качестве примера оценки знаний материала студентами во время экзаменов. Различия между оценками 5 - «отлично» и 4 - «хорошо» указывают лишь на то, что уровень знаний отличника выше уровня знаний «хорошиста». Однако на основе такого рода оценок нельзя сказать, насколько или во сколько раз эти уровни знаний отличаются друг от друга.
Таким образом, шкала порядка отображает монотонное возрастание или убывание измеряемого признака с помощью монотонно возрастающих или монотонно уменьшающихся чисел. Оценить направление изменения признака можно только в том случае, если шкала порядка содержит не меньше трех классов, которые образуют последовательность. Из-за того что в шкале порядка устанавливается последовательность классов, любые преобразования, связанные с перестановками элементов этой шкалы, недопустимы.
К числу постулатов, которым подчиняются преобразования шкал порядка, относятся постулаты трихотомии, асимметрии и транзитивности. Прежде всего рассмотрим явление трихотомии. Если два объекта А и В обладают признаком X, то между ними по данному признаку может существовать одно из трех отношений: ХА<ХВ или ХА=ХВ, или ХА>ХВ. В соответствии с постулатом асимметрии справедливым будет следующее утверждение: если между объектами А и В по признаку Х обнаружено неравенство ХА>ХВ то никогда не может быть ХА<ХВ или ХА=ХВ. Наконец, в соответствии с постулатом транзитивности можно утверждать, что если три объекта А, В и С обладают признаком Х и между ними по признаку Х существуют отношения ХА<ХВ и ХВ<ХС, то из этого следует, что ХА<ХС. Следовательно, для порядковых шкал допустимы любые преобразования типа x' = f(x), где f(x) представляет собой любое монотонное преобразование, не изменяющее последовательности элементов. Это означает, что для преобразования шкал порядка можно пользоваться возведением в степень, извлечением корня, логарифмированием.
Довольно часто при сборе информации, служащей основой конструирования шкал порядка, нарушается постулат о транзитивности. Представим себе, что во время состязаний спортсменов или при решении испытуемым задач диагностического теста результаты лица А лучше результатов лица В, но у последнего они лучше, чем у лица С. Очевидно, что в этом случае никакой проблемы в упорядочении результатов не возникает и можно построить последовательность А>В>С. Однако во время спортивных состязании и во время тестирования бывает так, что результат С оказывается лучшим, чем результат А. Очевидно, что в таком случае постулат о транзитивности исходных величин нарушен. Поэтому для построения порядковых шкал приходится привлекать дополнительные критерии. Например: спортсменам предлагают провести не одну, а несколько игр, и испытуемым решить не одну, а множество задач одной трудности. Тогда ранговое место игрока, т. е. место испытуемого среди других лиц опытной группы, определится уже по иному критерию, а именно по частоте выигрышей или числу правильно решенных задач.
Упорядочивание объектов может быть униполярным или биполярным. При униполярном установлении порядка объекты или классы объектов соотносят, используя в качестве индикатора степень выраженности одного-единственного свойства. Например, шкала порядка для оценки умственной отсталости может содержать следующие классы: «нет отклонения от нормы/отклонение слабое /отклонение среднее /отклонение сильное».
При биполярном упорядочивании исходят, как правило, из полярных проявлений какого-то свойства, которые фиксируются в виде двух «точек отсчета» на шкале. Примером биполярной шкалы в психологическом исследовании является методика семантического дифференциала. В этом случае для построения шкалы первоначально производят отбор некоторого множества понятий, которые могут характеризовать, по мнению исследователя, изучаемые психические свойства испытуемого. Затем каждому понятию находят антоним (например: «общительный - замкнутый», «сильный - слабый», «уравновешенный - неуравновешенный»). Очевидно, что между каждыми двумя такими понятиями располагается несколько промежуточных оценочных категорий. Словесное определение промежуточных категорий очень часто вызывает у исследователей значительные трудности, поскольку в языке, как правило, мы легче находим понятия для обозначения экстремальных степеней выраженности какого-то свойства и труднее - для промежуточных.
Примерами использования в психологии порядковых шкал могут служить первичные результаты тестовых испытаний группы лиц, первичные результаты при использовании некоторых личностных опросников, работы со шкалами самооценки и т. п. Можно сказать, что результаты большинства психологических исследований представляют собой ординальные величины, т. е. выражающиеся порядковыми числами. Об этом необходимо помнить, поскольку характер первичных результатов накладывает ряд ограничений на возможность использования тех или других статистических приемов их обработки и анализа. Поскольку в порядковых шкалах не определена единая точка отсчета величин, то и для их элементов, как и для элементов шкал наименований, непригодны способы расчета, требующие арифметических действий, - в частности сложение и вычитание. В качестве меры положения классов объектов для преобразования шкал порядка кроме моды (Мо) могут быть использованы еще и медиана (Me), полуквартильные отклонения (Q1 и Q3), а в качестве меры тесноты взаимосвязи классов - коэффициент ранговой корреляции Ч. Спирмена (r).
Шкалы интервалов. Когда шкала обладает всеми свойствами порядковой шкалы и дополнительно к этому определены еще расстояния между ее единицами, то такую шкалу называют шкалой интервалов. Иначе говоря, классы объектов шкал интервалов всегда дискретны и упорядочены по степени возрастания (или убывания) измеряемого свойства. Кроме того, в этих шкалах одинаковым разностям степени выраженности измеряемого свойства соответствуют равные разности между приписываемыми им числами. Шкалы интервалов имеют равные единицы измерения, однако способ их определения является произвольным, следовательно, и сами единицы произвольны. При этом неизвестна абсолютная величина отдельных значений по шкале, поскольку шкала интервалов не имеет естественной нулевой точки отсчета. Последняя может быть произвольно смещена.