577
______ Часть II. Введение в научное психологическое исследование___
Наконец, фрагмент Е дает коэффициент корреляции, равный или близкий к 0, так как в данном случае связь между переменными хотя и существует, но не является линейной.
Коэффициент линейной корреляции определяется при помощи следующей формулы:
где г — коэффициент линейной корреляции;
х, у — средние выборочные значения сравниваемых величин; х., у — частные выборочные значения сравниваемых величин; п — общее число величин в сравниваемых рядах показателей;
si' Sy~ дисперсии, отклонения сравниваемых величин от
средних значений.
Пример. Определим коэффициент линейной корреляции между следующими двумя рядами показателей. Ряд 1:2,4,4,5,3, 6, 8. Ряд II: 2, 5, 4, 6, 2, 5, 7. Средние значения этих двух рядов соответственно равны 4,6 и 4,4. Их дисперсии составляют следующие величины: 3,4 и 3,1. Подставив эти данные в приведенную выше формулу коэффициента линейной корреляции, получим следующий результат: 0,92. Следовательно, между рядами данных существует значимая связь, причем довольно явно выраженная, так как коэффициент корреляции близок к единице. Действительно, взглянув на эти ряды цифр, мы обнаруживаем, что большей цифре в одном ряду соответствует большая цифра в другом ряду и, наоборот, меньшей цифре в одном ряду соответствует примерно такая же малая цифра в другом ряду.
К коэффициенту ранговой корреляции в психолого-педагогических исследованиях обращаются в том случае, когда признаки, между которыми устанавливается зависимость, являются качественно различными и не могут быть достаточно точно оценены при помощи так называемой интервальной измерительной шкалы. Интервальной называют такую шкалу, которая позволяет оценивать расстояния между ее значениями и судить о
578
______ Глава 3. Статистический анализ экспериментальных данных___
том, какое из них больше и насколько больше другого. Например, линейка, с помощью которой оцениваются и сравниваются длины объектов, является интервальной шкалой, так как, пользуясь ею, мы можем утверждать, что расстояние между двумя и шестью сантиметрами в два раза больше, чем расстояние между шестью и восемью сантиметрами. Если же, пользуясь некоторым измерительным инструментом, мы можем только утверждать, что одни показатели больше других, но не в состоянии сказать на сколько, то такой измерительный инструмент называется не интервальным, а порядковым.
Большинство показателей, которые получают в психолого-педагогических исследованиях, относятся к порядковым, а не к интервальным шкалам (например, оценки типа «да», «нет», «скорее нет, чем да» и другие, которые можно переводить в баллы), поэтому коэффициент линейной корреляции к ним неприменим. В этом случае обращаются к использованию коэффициента ранговой корреляции, формула которого следующая:
где Rs— коэффициент ранговой корреляции по Спирмену;
di— разница между рангами показателей одних и тех же испытуемых в упорядоченных рядах;
п — число испытуемых или цифровых данных (рангов) в коррелируемых рядах.
Пример. Допустим, что педагога-экспериментатора интересует, влияет ли интерес учащихся к учебному предмету на их успеваемость. Предположим, что с помощью некоторой психодиагностической методики удалось измерить величину интереса к учению и выразить его для десяти учащихся в следующих цифрах: 5,6,7,8,2,4,8,7,2,9. Допустим также, что при помощи другой методики были определены средние оценки этих же учащихся по данному предмету, оказавшиеся соответственно равными: 3,2; 4,0; 4,1; 4,2; 2,5; 5,0; 3,0; 4,8; 4,6; 2,4.
Упорядочим оба ряда оценок по величине цифр и припишем каждому из учащихся по два ранга; один из них указывает на то,
19* 579
______ Часть II. Введение в научное психологическое исследование____
какое место среди остальных данных ученик занимает по успеваемости, а другой — на то, какое место среди них же он занимает по интересу к учебному предмету. Ниже приведены ряды цифр, два из которых (первый и третий) представляют исходные данные, а два других (второй и четвертый) — соответствующие ранги1:
2-1,5 | 2,4-1 |
2-1,5 | 2,5-2 |
4-3 | 3,0-3 |
5-4 | 3,2 - 4 |
6-5 | 4,0-5 |
7-6,5 | 4,1-6 |
7-6,5 | 4,2-7 |
8-8,5 | 4,6-8 |
9-10 | 5,0 - 10 |
Определив сумму квадратов различий в рангах ( ^df ) и подставив нужное значение в числитель формулы, получаем, что коэффициент ранговой корреляции равен 0,97, т.е. достаточно высок, что и говорит о том, что между интересом к учебному предмету и успеваемостью учащихся действительно существует статистически достоверная зависимость.
Однако по абсолютным значениям коэффициентов корреляции не всегда можно делать однозначные выводы о том, являются ли они значимыми, т.е. достоверно свидетельствуют о существовании зависимости между сравниваемыми переменными. Может случиться так, что коэффициент корреляции, равный 0,50, не будет достоверным, а коэффициент корреляции, составивший 0,30, — достоверным. Многое в решении этого вопроса зависит от того, сколько показателей было в коррелируемых друг с другом рядах признаков: чем больше таких показателей, тем меньшим по величине может быть статистически достоверный коэффициент корреляции.
В табл. 35 представлены критические значения коэффициентов корреляции для различных степеней свободы. (В данном
1 Если исходные данные, которые ранжируются, одинаковы, то и их ранги также будут одинаковыми. Они получаются путем суммирования и деления пополам тех рангов, которые соответствуют этим данным.
580
Глава 3. Статистический анализ экспериментальных данных___
Таблица 35 Критические значения коэффициентов корреляции для различных степеней свободы (и - 2) и разных вероятностей допустимых ошибок
Число | |||
степеней свободы | Уровень значимости | [ | |
0,05 | 0,01 | 0,001 | |
2 | 0,9500 | 0,9900 | 0,9900 |
3 | 8783 | 9587 | 9911 |
4 | 8114 | 9172 | 9741 |
5 | 0,7545 | 0,8745 | 0,9509 |
6 | 7067 | 8343 | 9249 |
7 | 6664 | 7977 | 8983 |
8 | 6319 | 7646 | 8721 |
9 | 6021 | 7348 | 8471 |
10 | 0,5760 | 0,7079 | 0,8233 |
И | 5529 | 6833 | 8010 |
12 | 5324 | 6614 | 7800 |
13 | 5139 | 6411 | 7604 |
14 | 4973 | 6226 | 7419 |
15 | 0,4821 | 0,6055 | 0,7247 |
16 | 4683 | 5897 | 7084 |
17 | 4555 | 5751 | 6932 |
18 | 4438 | 5614 | 6788 |
19 | 4329 | 5487 | 6625 |
20 | 0,4227 | 0,5368 | 0,6524 |
21 | 4132 | 5256 | 6402 |
22 | 4044 | 5151 | 6287 |
23 | 3961 | 5052 | 6177 |
24 | 3882 | 4958 | 6073 |
25 | 0,3809 | 0,4869 | 0,5974 |
26 | 3739 | 4785 | 5880 |
27 | 3673 | 4705 | 5790 |
28 , | 3610 | 4629 | 5703 |
29 | 3550 | 4556 | 5620 |
30 | 0,3494 | 0,4487 | 0,5541 |
31 | 3440 | 4421 | 5465 |
32 | 3388 | 4357 | 5392 |
33 | 0,3338 | 0,4297 | 0,5322 |
34 | 3291 | 4238 | 5255 |
35 | 0,3246 | 0,4182 | 0,5189 |
36 | 3202 | 4128 | 5126 |
37 | 3160 | 4076 | 5066 |
38 | 3120 | 4026 | 5007 |
39 | 3081 | 3978 | 4951 |
40 | 0,3044 | 0,3932 | 0,4896 |
581