Пример. Представим следующий ряд частных признаков: О, 1,1,2,2,3,3,3,4,4,5,5,5,5,6,6,6,7,7,8,8,8,9,9,9,10,10,11,11, 11. Этот ряд включает в себя 30 значений. Разобьем представленный ряд на шесть подгрупп по пять признаков в каждом. Первая подгруппа включит в себя первые пять цифр, вторая — следующие пять и т.д. Вычислим средние значения для каждой из пяти образованных подгрупп чисел. Они соответственно будут равны 1,2; 3,4; 5,2; 6,8; 8,6; 10,6. Таким образом, нам удалось свести исходный ряд, включающий тридцать значений, к ряду, содержащему всего шесть значений и представленному средними величинами. Это и будет интервальный ряд, а проведенная процедура — разделением исходного ряда на интервалы. Теперь все статистические расчеты мы можем производить не с исходным рядом признаков, а с полученным интервальным рядом, и результаты в равной степени будут относиться к исходному ряду. Однако число производимых в ходе расчетов элементарных арифметических операций будет гораздо меньше, чем количество тех операций, которые с этой же целью пришлось бы проделать в отношении исходного ряда признаков. На практике, составляя интервальный ряд, рекомендуется руководствоваться следующим правилом: если в исходном ряду признаков больше чем тридцать, то этот ряд целесообразно разделить на пять-шесть интервалов и в дальнейшем работать только с ними.
Для проверки сказанного проведем пробное вычисление среднего значения по приведенному выше ряду, составляющему тридцать чисел, и по ряду, включающему только интервальные сред-
565
Часть II. Введение в научное психологическое исследование
ние значения. Полученные цифры с точностью до двух знаков после запятой будут соответственно равны 5,97 и 5,97, т.е. являются одинаковыми.
МЕТОДЫ ВТОРИЧНОЙ СТАТИСТИЧЕСКОЙ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА
С помощью вторичных методов статистический обработки экспериментальных данных непосредственно проверяются, доказываются или опровергаются гипотезы, связанные с экспериментом. Эти методы, как правило, сложнее, чем методы первичной статистической обработки, и требуют от исследователя хорошей подготовки в области элементарной математики и статистики.
Обсуждаемую группу методов можно разделить на несколько подгрупп: 1. Регрессионное исчисление. 2. Методы сравнения между собой двух или нескольких элементарных статистик (средних, дисперсий и т.п.), относящихся к разным выборкам. 3. Методы установления статистических взаимосвязей между переменными, например их корреляции друг с другом. 4. Методы выявления внутренней статистической структуры эмпирических данных (например, факторный анализ). Рассмотрим каждую из выделенных подгрупп методов вторичной статистической обработки на примерах.
Регрессионное исчисление — это метод математической статистики, позволяющий свести частные, разрозненные данные к некоторому линейному графику, приблизительно отражающему их внутреннюю взаимосвязь, и получить возможность по значению одной из переменных приблизительно оценивать вероятное значение другой переменной.
Воспользуемся для графического представления взаимосвязанных значений двух переменных х и у точками на графике (рис. 73). Поставим перед собой задачу: заменить точки на графике линией прямой регрессии, наилучшим образом представляющей взаимосвязь, существующую между данными переменными. Иными словами, задача заключается в том, чтобы через скопление точек, имеющихся на этом графике, провести прямую линию,
566
______ Глава 3. Статистический анализ экспериментальных данных____ |
Рис.73. Прямая регрессии YnoX. х и у — средние значения переменных. Отклонения отдельных значений от линии регрессии обозначены вертикальными пунктирными линиями. Величина yt- у является отклонением измеренного значения переменной у. от оценки, а величина у - у является отклонением оценки от среднего значения (Цит. по: Иберла К. Факторный анализ. М., 1980. С. 23).
пользуясь которой по значению одной из переменных, х или у, можно приблизительно судить о значении другой переменной. Для того чтобы решить эту задачу, необходимо правильно найти коэффициенты а и Ь в уравнении искомой прямой:
у = ах + Ь.
Это уравнение представляет прямую на графике и называется уравнением прямой регрессии.
567 |
Формулы для подсчета коэффициентов а и Ь являются следующими:
Часть II. Введение в научное психологическое исследование
где х., у{— частные значения переменных X и Y, которым соответствуют точки на графике;
х, у — средние значения тех же самых переменных;
п — число первичных значений или точек на графике.
Для сравнения выборочных средних величин, принадлежащих к двум совокупностям данных, и для решения вопроса о том, отличаются ли средние значения статистически достоверно друг от друга, нередко используют ^-критерий Стъюдента. Его основная формула выглядит следующим образом:
где х{ — среднее значение переменной по одной выборке данных;
хг — среднее значение переменной по другой выборке данных;
т1ит2 — интегрированные показатели отклонений частных значений из двух сравниваемых выборок от соответствующих им средних величин.
/и, и т2в свою очередь вычисляются по следующим формулам:
—2
где St — выборочная дисперсия первой переменной (по первой выборке);
—2
5"г — выборочная дисперсия второй переменной (по второй выборке);
я, — число частных значений переменной в первой выборке;
п2 — число частных значений переменной по второй выборке.
После того как при помощи приведенной выше формулы вычислен показатель t, по таблице 32 для заданного числа степеней свободы, равного п{+ п2 - 2, и избранной вероятности допустимой ошибки1 находят нужное табличное значение t и сравнива-
1 Степени свободы и вероятность допустимой ошибки — специальные ма-тематико-статистические термины, содержание которых мы здесь не будем рассматривать.
568
Глава 3. Статистический анализ экспериментальных данных
Таблица 32 Критические значения ^-критерия Стъюдента для заданного числа степеней свободы и вероятностей допустимых ошибок, равных 0,05; 0,01 и 0,001
Число степеней свободы | Вероятность допустимой ошибки | ||
0,05 0,01 0,001 | |||
Критические значения показателя t | |||
(я, + п., - 2) | |||
4 | 2,78 | 5,60 | 8,61 |
5 | 2,58 | 4,03 | 6,87 |
6 | 2,45 | 3,71 | 5,96 |
7 | 2,37 | 3,50 | 5,41 |
8 | 2,31 | 3,36 | 5,04 |
9 | 2,26 | 3,25 | 4,78 |
10 | 2,23 | 3,17 | 4,59 |
11 | 2,20 | 3,11 | 4,44' |
12 | 2,18 | 3,05 | 4,32 |
13 | 2,16 | 3,01 | 4,22 |
14 | 2,14 | 2,98 | 4,14 |
15 | 2,13 | 2,96 | 4,07 |
16 | 2,12 | 2,92 | 4,02 |
17 | 2,11 | 2,90 | 3,97 |
18 | 2,10 | 2,88 | 3,92 |
19 | 2,09 | 2,86 | 3,88 |
20 | 2,09 | 2,85 | 3,85 |
21 | 2,08 | 2,83 | 3,82 |
22 | 2,07 | 2,82 | 3,79 |
23 | 2,07 | 2,81 | 3,77 |
24 | 2,06 | 2,80 | 3,75 |
25 | 2,06 | 2,79 | 3,73 |
26 | 2,06 | 2,78 | 3,71 |
27 | 2,05 | 2,77 | 3,69 |
28 | 2,05 | 2,76 | 3,67 |
29 | 2,05 | 2,76 | 3,66 |
30 | 2,04 | 2,75 | 3,65 |
40 | 2,02 | 2,70 | 3,55 |
50 | 2,01 | 2,68 | 3,50 |
60 | 2,00 | 2,66 | 3,46 |
80 | 1,99 | 2,64 | 3,42 |
100 | 1,98 | 2,63 | 3,39 |
ют с ними вычисленное значение t. Если вычисленное значение t больше или равно табличному, то делают вывод о том, что сравниваемые средние значения из двух выборок действительно ста-